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Correctness by Construction

• Correctness by Construction is a method of building software -based
systems with demonstrable correctness for security- and
safety-critical applications.

• Correctness by Construction advocates a step-wise refinement

process from specification to code using tools for checking and
transforming models.

• Correctness by Construction is an approach to software/system
construction
▶ starting with an abstract model of the problem.
▶ progressively adding details in a step-wise and checked fashion.
▶ each step guarantees and proves the correctness of the new concrete

model with respect to requirements
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The Cleanroom Method as CbC

• The Cleanroom method, developed by Harlan Mills and his
colleagues at IBM and elsewhere, attempts to do for software what
cleanroom fabrication does for semiconductors : to achieve quality
by keeping defects out during fabrication.

• In semiconductors, dirt or dust that is allowed to contaminate a
chip as it is being made cannot possibly be removed later.

• But we try to do the equivalent when we write programs that are
full of bugs, and then attempt to remove them all using debugging.
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The Cleanroom Method as CbC

The Cleanroom method, then, uses a number of techniques to develop
software carefully, in a well-controlled way, so as to avoid or eliminate as
many defects as possible before the software is ever executed. Elements
of the method are :

• specification of all components of the software at all levels ;

• stepwise refinement using constructs called ”box structures” ;

• verification of all components by the development team ;

• statistical quality control by independent certification testing ;

• no unit testing, no execution at all prior to certification testing.
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Problems for Modelling systems

• Systems are generally very complex

• Invariant should be strong enough for proving safety
properties

• Problems for modelling : finding suitable mathematical
structures, listing events or actions of the system, proving
proof obligations, . . .
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Solution : refining models

• To understand more and more the system

• To distribute the complexity of the system

• To distribute the difficulties of the proof

• To improve explanations

• Validation (step by step)

• Refinement (invariant & behavior)
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refinement between two events (I)

definition

Let x be the abstract variable (or list of variables) and I(s, c, x) the
abstract invariant, y the concrete variable (or list of variables) and
J(s, c, x, y) the concrete invariant.
Let c be a concrete event observing the variable y and a an event
observing the variable x and preserving I(s, c, x).
Event c refines event a with respect to x, I(s, c, x), y and J(s, c, x, y), if

AX(s, c) ⊢ I(s, c, x) ∧ J(s, c, x, y)⇒ [c](¬[a](¬J(s, c, x, y)))
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Abstract event refined by a concret event

a
def
=

ANY u WHERE
G(u, s, c, x)

THEN
x : |ABAP (u, s, c, x, x′)

END

c
def
=

ANY v WHERE
H(v, s, c, y)

WITNESS
u : WP (u, s, c, v, y)
x′ : WV (v, s, c, y′, x′)

THEN
y : |CBAP (v, s, c, y, y′)

END
The two events a and c are normalised by a relationship called
BA(e)(s,c,x,x’), which simplifies the notations used.
The two events a and c are equivalent to events of the following
normalized form :

• a is equivalent to
begin x : |(∃u.G(u, s, c, x) ∧ABAP (u, s, c, x, x′)) end

• c is equivalent to
begin y : |(∃v.H(v, s, c, y) ∧ CBAP (v, s, c, y, y′)) end
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Explanations for the refinement

(Hypothesis)
(1) AX(s, c) ⊢ I(s, c, x) ∧ J(s, c, x, y)⇒ [c](¬[a](¬J(s, c, x, y)))
equivalent to
( Definition of [a] : [a](¬J(s, c, x, y)) ≡
∀x′.(∃u.G(u, s, c, x) ∧ABAP (u, s, c, x, x′))⇒¬J(s, c, x′, y)))
(2) AX(s, c) ⊢ I(s, c, x) ∧ J(s, c, x, y)⇒ [c](¬(∀x′.(∃u.G(u, s, c, x) ∧
ABAP (u, s, c, x, x′))⇒¬J(s, c, x′, y))
equivalent to
(Transformation by simplification of logical connectives)
(3) AX(s, c) ⊢ I(s, c, x) ∧ J(s, c, x, y)⇒ [c](∃x′.(∃u.G(u, s, c, x) ∧
ABAP (u, s, c, x, x′)) ∧ J(s, c, x′, y))
equivalent to
( Definition of [c])
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(4) AX(s, c) ⊢
I(s, c, x)∧ J(s, c, x, y)⇒ (∀y′.(∃v.H(v, s, c, x)∧CBAP (v, s, c, y, y′))⇒
((∃x′.(∃u.G(u, s, c, x) ∧ABAP (u, s, c, x, x′)) ∧ J(s, c, x′, y′)))
equivalent to
(Transformation by quantifier elimination ∀)
(5) AX(s, c) ⊢
I(s, c, x) ∧ J(s, c, x, y)⇒ (∃v.H(v, s, c, y) ∧ CBAP (v, s, c, y, y′))⇒
((∃x′.(∃u.G(u, s, c, x) ∧ABAP (u, s, c, x, x′)) ∧ J(s, c, x′, y′)))
equivalent to
(Transformation by elimination of connector ∧)
(6) AX(s, c) ⊢
I(s, c, x) ∧ J(s, c, x, y) ∧ (∃v.H(v, s, c, y) ∧ CBAP (v, s, c, y, y′))⇒
((∃x′.(∃u.G(u, s, c, x) ∧ABAP (u, s, c, x, x′))⇒ J(s, c, x′, y′)))
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equivalent to
(Transformation by elimination of quantifier ∃)
(7)
AX(s, c) ⊢ I(s, c, x)∧J(s, c, x, y)∧H(v, s, c, y)∧CBAP (v, s, c, y, y′)⇒
((∃x′.(∃u.G(u, s, c, x) ∧ABAP (u, s, c, x, x′)) ∧ J(s, c, x′, y′)))
equivalent to
(Transformation by property of quantifier ∃)
(8)
AX(s, c) ⊢ I(s, c, x)∧J(s, c, x, y)∧H(v, s, c, y)∧CBAP (v, s, c, y, y′)⇒
((∃x′.((∃u.G(u, s, c, x) ∧ABAP (u, s, c, x, x′)) ∧ J(s, c, x′, y′)))
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equivalent to
(Transformation by elimination of ∧)
(9)

1 AX(s, c) ⊢ I(s, c, x) ∧ J(s, c, x, y) ∧H(v, s, c, y) ∧
CBAP (v, s, c, y, y′)⇒ (((∃u.G(u, s, c, x))

2 AX(s, c) ⊢
I(s, c, x) ∧ J(s, c, x, y) ∧H(v, s, c, x) ∧ CBAP (v, s, c, y, y′)⇒
((∃x′.∃u.(ABAP (u, s, c, x, x′)) ∧ J(s, c, x′, y′)))
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property refinement between events (II)

Let x be the abstract variable (or list of variables) and I(s, c, x) the
abstract invariant, y the concrete variable (or list of variables) and
J(s, c, x, y) the concrete invariant. the concrete invariant.
Let c be a concrete event observing the variable y and a an event
observing the variable x and preserving I(s, c, x).
Event c refines event a with respect to x, I(s, c, x), y and J(s, c, x, y)
if, and only if,

1 (GRD) AX(s, c) ⊢ I(s, c, x) ∧ J(s, c, x, y) ∧H(v, s, c, x) ∧
CBAP (v, s, c, y, y′)⇒∃u.G(u, s, c, x)

2 (SIM) AX(s, c) ⊢ I(s, c, x) ∧ J(s, c, x, y) ∧H(v, s, c, x) ∧
CBAP (v, s, c, y, y′)⇒((∃x′.∃u.ABAP (u, s, c, x, x′)∧J(s, c, x′, y′)))
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Proof obligations for Event-B refinement)

• (INIT) AX(s, c), CInit(s, c, y′) ⊢ ∃x′.(AInit(s, c, x′) ∧ J(s, c, x′, y′)

• (GRD)
AX(s, c), I(s, c, x), J(s, c, x, y), H(v, s, c, x), CBAP (v, s, c, y, y′) ⊢
(((∃u.G(u, s, c, x))

• (GRD-WIT)
AX(s, c), I(s, c, x), J(s, c, x, y), H(v, s, c, x), CBAP (v, s, c, y, y′),
WP (u, s, c, v, y) ⊢ G(u, s, c, x)

• (SIM) AX(s, c), I(s, c, x), J(s, c, x, y), H(v, s, c, x), CBAP (v, s, c, y, y′) ⊢
((∃x′.(∃u.ABAP (u, s, c, x, x′)) ∧ J(s, c, x′, y′)))

• (SIM-WIT)
AX(s, c), I(s, c, x), J(s, c, x, y), H(v, s, c, x), CBAP (v, s, c, y, y′),
WP (u, s, c, v, y),WV (v, s, c, y, x′) ⊢ ABAP (u, s, c, x, x′)) ∧ J(s, c, x′, y′)

• (WFIS-P)
AX(s, c) ⊢ I(s, c, x) ∧ J(s, c, x, y) ∧H(v, s, c, x) ∧ CBAP (v, s, c, y, y′) ⊢
∃u.WP (u, s, c, v, y)

• (WFIS-V)
AX(s, c) ⊢ I(s, c, x) ∧ J(s, c, x, y) ∧H(v, s, c, x) ∧ CBAP (v, s, c, y, y′) ⊢
∃x′.WV (v, s, c, y, x′)

• (TH) AX(s, c) ⊢ I(s, c, x) ∧ J(s, c, x, y) ⊢ SAFE1(s, c, x, y)
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MACHINE CM REFINES AM
SEES E
VARIABLES y
INVARIANTS

jnv1 : J1(s, c, x, y)
. . .
jnvr : Jr(s, c, x, y)

THEOREMS
th1 : SAFE1(s, c, x, y)
. . .
thn : SAFEn(s, c, x, y)

VARIANTS
var1 : varexp1(s, c, y)
. . .
vart : varexpt(s, c, y)

EVENTS
EVENT initialisation

BEGIN
y : |(CInit(s, c, y′))

END
. . .
EVENT c REFINES a

ANY v WHERE
H(v, s, c, y)

WITNESS
u : WP (u, s, c, v, y)
x′ : WV (v, s, c, y′, x′)
THEN

y : |CBAP (v, s, c, y, y′)
END
. . .

END

• The machine CM is a model describing a
set of events E(CM ) modifying the y
variable declared in the clause
VARIABLES.

• A clause REFINES indicates that the
CM machine refines a AM machine and
E(AM ) is the set of abstract events in
AM .

• A particular event defines the initialisation
of variable y according to the relationship
CInit(s, c, y′).

• The property “ Event c refines event a
with respect to x, I(s, c, x), y and
J(s, c, x, y)” is denoted by the expression
c refines a. Events a and c are attached to
two machines AM and CM ; the invariant
attached to each event is the invariant of
its machine.
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• A clause INVARIANTS describes the inductive invariant invariant
J(s, c, x, y) that this machine is assumed to respect provided that
the associated verification conditions are shown to be valid in the
theory induced by the context E mentioned by the clause SEES.
J(s, c, x, y) is the gluing invariant linking the variable y to the
variable x.

• The clause THEOREMS introduces the list of safety properties
derived in the theory. These properties relate to the variables y and
x and must be proved valid. It is possible to add theorems about
sets and constants ; this can help the proofs to be carried out during
the verification process.

• To conclude this description, we would like to add that events can
carry very important information for the proof process, in particular
for proposing witnesses during event refinement. Furthermore, each
event has a status (ordinary, convergent, anticipated) which is
important in the production of verification conditions. The clause
VARIANTS is linked to events of convergent and anticipated
status. The event c (concrete) explicitly refines an event a of the
AM machine.
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Event-B machine refinement REFINES

definition
The machine CM refines the machine AM , if any event c of CM refines
an event a of AM :
∀c.c ∈ E(CM )⇒∃a.a ∈ E(AM ) ∧ e refines a.

• Each machine has an event skip which does not modify the
machine’s variables.

• A concrete event c can refine an event skip whose effect is not to
modify x in the abstract machine AM.

• The invariant of AM is I(s, c, x) and that the initialisation of AM is
AInit(s, c, x′).

• The proof witnesses are used to give properties of the parameter u
and the variable x which have disappeared in the machine CM but
for which the user must give an expression according to the state of
CM .
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Refinement between two machines

I(x0)

x0

I(x)

x

I(x’)

x’

y0 y y’

abstract trace BA(a)(s,c,x,x’)

a
. . .

concrete trace BA(c)(s,c,y,y’)

c . . .

J(x0,y0) J(x,y) J(x’,y’)
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Example of a clock

• A machine M1 models hours or a machine M1 reports observations
of hours

• and a machine M2 reports hours and minutes.

• A very special case of refinement called superposition and the proof
is fairly straightforward.
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CONTEXT C

CONSTANTS H M

AXIOMS
@axm1 H = 0..23
@axm2 M = 0..59

end
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MACHINE M1 SEES C

VARIABLES h

INVARIANTS
@inv1 h ∈ H

EVENTS
EVENT INITIALISATION

then
@act1 h : ∈ H

end

EVENT h1
where

@grd1 h < 23
then

@act1 h := h + 1
end

EVENT h2
where

@grd1 h = 23
then

@act1 h := 0
end

end
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MACHINE M2
REFINES M1
SEES C

VARIABLES h m

INVARIANTS
@inv1 m ∈ M
theorem @inv2 h ∈ H

EVENTS
EVENT INITIALISATION

then
@act1 h : ∈ H
@act2 m : ∈ M

end

EVENT h1m1
where

@grd1 h < 23
@grd2 m < 59
then

@act2 m := m + 1
end

EVENT h1m2 REFINES h1
where

@grd1 h < 23
@grd2 m = 59
then

@act1 h := h + 1
@act2 m := 0

end

EVENT h2m1 REFINES h2
where

@grd1 h = 23
@grd2 m = 59
then

@act1 h := 0
@act2 m := 0

end

EVENT h2m2
where

@grd1 h = 23
@grd2 m < 59
then

@act1 m := m + 1
end

end
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Refinement of a model by another one (I)

I(x) x x′ I(x′)

J(x, y) y y′ J(x′, y′)
?

-ae(x,x′)

?

6

-ce(y,y′)

6

1

I(x) AM AC T hi

J(x, y) CM CC T hi+1

-SEES

6
REFINES

-SEES

6
EXTENDS

Telecom Nancy 2024-2025 (Dominique Méry) 29/74



Refinement of a model by another one (II)

I(x) x x′ I(x′)

J(x, y) y y′ J(x′, y′)
?

-x=x′

?

6

-ce(y,y′)

6

I(x) x I(x)

J(x, y) y y′ J(x, y′)
�
�
�
�
���

-ce(y,y′)
A

A
A
A
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Proof obligations for refinement

(REF1) : refinement of initial conditions

Initc(y) ⇒ ∃x ∗ (Init(x) ∧ J(x, y)) :

The initial condition of the refinement model imply that there
exists an abstract value in the abstract model such that that value
satisfies the initial conditions of the abstract one and implies the
new invariant of the refinement model.
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Proof obligations for refinement

(REF2) : refinement of events

I(x) ∧ J(x, y) ∧ ce(y, y′) ⇒ ∃x′.(ae(x, x′) ∧ J(x′, y′)) :

The invariant in the refinement model is preserved by the refined
event and the activation of the refined event triggers the
corresponding abstract event.
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Proof obligations for refinement

(REF3) : refinement of stuttering steps

I(x) ∧ J(x, y) ∧ ce(y, y′) ⇒ J(x, y′) :

The invariant in the refinement model is preserved by the refined
event but the event of the refinement model is a new event which
was not visible in the abstract model ; the new event refines skip.
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Proof obligations for refinement

(REF4) : Refinement does not introduce more blocking states

I(x) ∧ J(x, y) ∧ (G1(x) ∨ . . . ∨ Gn(x)) ⇒ H1(y) ∨ . . . ∨ Hk(y) :

The guards of events in the refinement model are strengthened
and we have to prove that the refinement model is not more
blocked than the abstract.
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Proof obligations for refinement

(REF5) : Well-definedness of variant

I(x) ∧ J(x, y)) ⇒ V (y) ∈ N
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Proof obligations for refinement

(REF6) : Well behaviour of new events

I(x) ∧ J(x, y) ∧ ce(y, y′) ⇒ V (y′) < V (y) :

New events should not block forever abstract ones.
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Proof obligations for refinement

(REF7) : Feasibility of refined events

Γ(s, c) ⊢ I(x) ∧ J(x, y) ∧ grd (E) ⇒ ∃y′ · P (y, y′)
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Designing a algorithm for computing λx.x!

Computing λx.x!

The problem is to derive an algorithm which is computing the function
λx.x!.

#i f n d e f A H
#de f i n e A H
/∗@ ax i oma t i c mathfact {

@ l o g i c i n t e g e r mathfact ( i n t e g e r n ) ;
@ axiom math fac t 1 : mathfact (0 ) == 1 ;
@ axiom ma th f a c t r e c : \ f o r a l l i n t e g e r n ; n >= 1
==> mathfact ( n ) == n ∗ mathfact (n−1);
@ } ∗/

/∗@ r e q u i r e s n >= 0 ;
e n s u r e s \ r e s u l t == mathfact ( n ) ;

∗/
i n t c od e f a c t ( i n t n ) ;
#end i f
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Context for computing λx.x!.

CONTEXT A − functions

CONSTANTS factorial n

AXIOMS
@axm1 n ∈ N
@axm2 factorial ∈ N ↔ N
@axm3 0 7→ 1 ∈ factorial
@axm4 ∀ a. ∀ b . a ∈ N ∧ b ∈ N ∧ a 7→ b ∈ factorial

⇒ a + 1 7→ (a + 1) ∗ b ∈ factorial
@axm5 ∀ f . f ∈ N ↔ N ∧ 0 7→ 1 ∈ f
∧ ( ∀ a, b . a ∈ N ∧ b ∈ N ∧ a 7→ b ∈ f

⇒ a + 1 7→ (a + 1) ∗ b ∈ f )
⇒ factorial ⊆ f

theorem @th1 factorial ∈ N → N
theorem @th2 factorial(0) = 1
theorem @th3 ∀ u . u ∈ N ∧ u ̸= 0 ⇒ factorial(u) = u ∗ factorial(u − 1)
@axm6 n > 3

end
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Machine B-prepost for stating the pre/post specification

MACHINE B − prepost SEES A − functions
VARIABLES r
INVARIANTS
@inv1 r ∈ Z
EVENTS
EVENT INITIALISATION

then
@act1 r : ∈ Z

end
EVENT computing1

then
@act1 r := factorial(n)

end
end

• Defining variables and
invariant

• r is the variable for the
result.

• n is the constant containing
the input of the process.
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Machine C-computing for stating the computing process

MACHINE C − computing REFINES B − prepost
SEES A − functions
VARIABLES r fac x
INVARIANTS
@inv1 fac ∈ N 7→ N
@inv2 dom(fac) ⊆ 0..n
@inv3 dom(fac) ̸= ∅
@inv4 ∀ i . i ∈ dom(fac) ⇒ fac(i) = factorial(i)
@inv5 x ∈ dom(fac)
@inv6 dom(fac) = 0..x
EVENT INITIALISATION REFINES INITIALISATION

then
@act1 r : ∈ Z
@act2 fac := { 0 7→ 1}
@act3 x := 0

end

• Two new variables x and fac are introduced for storing the
sequence factorial by iterating over x

• Condition of termination is that n ∈ dom(fac)

• fac(i) = factorial(i) is expressing the relationship between
computed values and mathematically defned values of the sequence.
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Machine C-computing for stating the computing process

EVENT computing2 REFINES computing1
where

@grd1 n ∈ dom(fac)
then

@act1 r := fac(n)
end

convergent EVENT step2
where

@grd11 x ∈ dom(fac)
@grd12 x + 1 /∈ dom(fac)
@grd13 n /∈ dom(fac)
then

@act11 fac(x + 1) := (x + 1) ∗ fac(x)
@act1 x := x + 1
end
VARIANT 0..n \ dom(fac)

• the event final is
controled by the
condition n ∈ dom(vv)
meaning that we have
finally reached the
computing goal.

• SIM proof obligations
are generated.

• the event
step-computng is
refining iteration and
when it observed, the
variant is decreasing.

• it refines skip
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Machine D-prealgo for getting an algorithmic process

MACHINE D − prealgo REFINES C − computing
SEES A − functions
VARIABLES r vfac cfac fac x
INVARIANTS
@inv1 vfac ∈ N
@inv2 cfac ∈ N
@inv3 cfac ≤ n
@inv4 cfac ≥ 0
@inv6 cfac ∈ dom(fac)
@inv5 vfac = fac(cfac)
@inv7 cfac + 1 /∈ dom(fac)
@inv8 dom(fac) = 0..cfac
@inv9 x = cfac

EVENT INITIALISATION
then

@act1 r : ∈ N
@act2 fac := { 0 7→ 1}
@act3 cfac := 0
@act4 vfac := 1
@act5 x := 0

end

• Two new variables
are introduced for
storing really useful
data namely the last
computed values of
the two sequences.

• Obviously, vfac and
cfac satsify
vfac = fac(cfac)

• Previous properties
of abstrcat variables
are safety properties
which are no more to
be reproved, thanks
to refienement.
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Machine D-prealgo for getting an algorithmic process

EVENT computing3 REFINES computing2
where

@grd2 cfac = n
then

@act1 r := vfac
end

convergent EVENT step3 REFINES step2
where

@grd1 cfac ̸= n
then

@act1 vfac := (cfac + 1) ∗ vfac
@act2 cfac := cfac + 1
@act3 fac(cfac + 1) := (cfac + 1) ∗ fac(cfac)
@act4 x := x + 1

end

• The two events
SIMulate the
abstract events.

• However, the guards
are strengthened and
are made closer to
an implementation :
cfac < n implies
n /∈ dom(fac) and
cfac = n implies
that n ∈ dom(fac).
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Machine E-algo for getting an algorithmic machine

VARIABLES r vfac cfac
INVARIANTS
theorem @thm1 vfac = factorial(cfac)
@inv1 r ∈ N
@computation inv1 fac ∈ N 7→ N
@inv2 dom(fac) ⊆ 0..n
@inv3 dom(fac) ̸= ∅
@inv4 ∀ i . i ∈ dom(fac) ⇒ fac(i) = factorial(i)
@inv5 x ∈ dom(fac)
@inv6 dom(fac) = 0..x
@algorithm inv1 vfac ∈ N
@algorithm inv2 cfac ∈ N
@algorithm inv3 cfac ≤ n
@algorithm inv4 cfac ≥ 0
@algorithm inv6 cfac ∈ dom(fac)
@algorithm inv5 vfac = fac(cfac)
@inv7 cfac + 1 /∈ dom(fac)
@inv8 dom(fac) = 0..cfac
@inv9 x = cfac

VARIANT n − cfac

• The variables
fac is now
hidden and they
disappear from
the machine.

• It is playing the
role of model
variables as
ghost variables.

• Invariants and
safety properties
are preserved
through
refinement.
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Machine E-algo for getting an algorithmic machine

EVENT INITIALISATION
then

@act1 r : ∈ N
@act3 cfac := 0
@act4 vfac := 1

end

EVENT computing4 REFINES computing3
where

@grd2 cfac = n
then

@act1 r := vfac
end

convergent EVENT step4 REFINES step3
where

@grd1 cfac ̸= n
then

@act1 vfac := (cfac + 1) ∗ vfac
@act2 cfac := cfac + 1

end

• Assignments of fac are
removed.
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Simple Form of an Event

- An event of the simple form is denoted by :

< event name > =̂
WHEN

< condition >
THEN

< action >
END

where
- < event name > is an identifier
- < condition > is the firing condition of the event
- < action > is a generalized substitution (parallel
“assignment”)
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Non-deterministic Form of an Event

- An event of the non-deterministic form is denoted by :

< event name > =̂
ANY < variable > WHERE

< condition >
THEN

< action >
END

where
- < event name > is an identifier
- < variable > is a (list of) variable(s)
- < condition > is the firing condition of the event
- < action > is a generalized substitution (parallel
“assignment”)
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Shape of a Generalized Substitution

A generalized substitution can be
- Simple assignment : x := E
- Generalized assignment : x : P (x, x′)
- Set assignment : x :∈ S

’ - Parallel composition :
T
· · ·
U
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Invariant Preservation Verification (0)

INVARIANT ∧ GUARD
=⇒
ACTION establishes INVARIANT
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Invariant Preservation Verification (1)

- Given an event of the simple form :

EVENT EVENT =̂
WHEN

G(x)
THEN

x := E(x)
END

and invariant I(x) to be preserved, the statement to prove is :

I(x) ∧ G(x) =⇒ I(E(x))
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Invariant Preservation Verification (2)

- Given an event of the simple form :

EVENT EVENT =̂
WHEN

G(x)
THEN

x : |P (x, x′)
END

and invariant I(x) to be preserved, the statement to prove is :

I(x) ∧ G(x) ∧ P (x, x′) =⇒ I(x′)
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Invariant Preservation Verification (3)

- Given an event of the simple form :

EVENT EVENT =̂
WHEN

G(x)
THEN

x :∈ S(x)
END

and invariant I(x) to be preserved, the statement to prove is :

I(x) ∧ G(x) ∧ x′ ∈ S(x) =⇒ I(x′)
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Invariant Preservation Verification (4)

- Given an event of the non-deterministic form :

EVENT EVENT =̂
ANY v WHERE

G(x, v)
THEN

x := E(x, v)
END

and invariant I(x) to be preserved, the statement to prove is :

I(x) ∧ G(x, v) =⇒ I(E(x, v))
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Refinement Technique (1)

- Abstract models works with variables x, and concrete one
with y
- A gluing invariant J(x, y) links both sets of vrbls
- Each abstract event is refined by concrete one (see below)

Telecom Nancy 2024-2025 (Dominique Méry) 58/74



Refinement Technique (2)

- Some new events may appear : they refine “skip”
- Concrete events must not block more often than the abstract
ones
- The set of new event alone must always block eventually
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Correct Refinement Verification (1)

- Given an abstract and a corresponding concrete event

EVENT ea =̂
WHEN

G(x)
THEN

x := E(x)
END

EVENT ec =̂
WHEN

H(y)
THEN

y := F (y)
END

and invariants I(x) and J(x, y), the statement to prove is :

I(x) ∧ J(x, y) ∧ H(y) =⇒ G(x) ∧ J(E(x), F (y))
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Correct Refinement Verification (2)

- Given an abstract and a corresponding concrete event

EVENT ea =̂
ANY v WHERE

G(x, v)
THEN

x := E(x, v)
END

EVENT ec =̂
ANY w WHERE

H(y, w)
THEN

y := F (y, w)
END

I(x) ∧ J(x, y) ∧ H(y, w)
=⇒
∃v · (G(x, v) ∧ J(E(x, v), F (y, w)) )
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Correct Refinement Verification (3)

- Given a NEW event

EVENT EVENT =̂
WHEN

H(y)
THEN

y := F (y)
END

and invariants I(x) and J(x, y), the statement to prove is :

I(x) ∧ J(x, y) ∧ H(y) =⇒ J(x, F (y))

Telecom Nancy 2024-2025 (Dominique Méry) 62/74
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General form of proof obligations for an event e

• INIT/I/INV : C(s, c), INIT (c, s, x) ⊢ I(c, s, x)

• e/I/INV : C(s, c), I(c, s, x), G(c, s, t, x), P (c, s, t, x, x′) ⊢ I(c, s, x′)

• e/act/FIS : C(s, c), I(c, s, x), G(c, s, t, x) ⊢
• e/act/WD : C(s, c), I(c, s, x), G(c, s, t, x) ⊢ ∃x′.P (c, s, t, x, x′)
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Well-definedness of an
Axiom

m / WD m is the axiom name

Well-definedness of a Deri-
ved Axiom

m / WD m is the axiom name

Derived Axiom m / THM m is the axiom name
Well-definedness of an In-
variant

v / WD v is the invariant name

Well-definedness of a Deri-
ved Invariant

m / WD m is the invariant name

Well-definedness of an
event Guard

t / d / WD
t is the event name d is the
action name

Well-definedness of an
event Action

t / d / WD
t is the event name d is the
action name

Feasibility of a non-det.
event Action

t / d / FIS
t is the event name d is the
action name

Derived Invariant m / THM m is the invariant name
Invariant Establishment INIT. / v /

INV
v is the invariant name

Invariant Preservation t / v / INV
t is the event name v is the
invariant name
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Merging Rules for transforming Event B models into
algorithms by J.-R. Abrial

WHEN
P
Q

THEN
S

END

WHEN
P
¬Q

THEN
T

END

are merged into

WHEN
P

THEN
WHILE Q DO

S
END;
T

END

Side Conditions :

• P must be invariant under S.

• The first event must have been introduced at one refinement step below
the second one.

• Special Case : If P is missing the resulting ”event” has no guard
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Merging Rules for transforming Event B models into
algorithms by J.-R. Abrial

WHEN
P
Q

THEN
S

END

WHEN
P
¬Q

THEN
T

END

are merged into

WHEN
P

THEN
IF Q THEN S
ELSE T
END;

END

Side Conditions :

• The disjunctive negation of the previous side conditions

• Special Case : If P is missing the resulting ”event” has no guard
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Deriving an algorithm

	
  

precondition : n 2 N
postcondition : result = factorial(n)

local variables : vfac, cfac 2 N

cfac := 0; vfac := 1; result :2 N;
while cfac 6= n do

Invariant : vfac = fac(cfac)

vfac := (cfac + 1) ⇤ vfac; cfac := cfac + 1;

;
result := vfac;

1
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Translating the machine E-algo to an algorithm

#inc l u d e < l i m i t s . h>
#inc l u d e ” f a c t o r i a l . h”

i n t c od e f a c t ( i n t n ) {
i n t c f a c =0;
i n t v f a c= 1 ;
/∗@ loop i n v a r i a n t c f a c >= 0 && c f a c <= n && mathfact ( c f a c ) == v f a c ;

l oop a s s i g n s c fac , v f a c ;
l oop v a r i a n t n−c f a c ;

∗/
wh i l e ( c f a c != n ) {

v f a c = ( c f a c +1)∗ v f a c ;
c f a c = c f a c + 1 ;

} ;
r e t u r n v f a c ;

}
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Conclusion

• Refinement helps in discovering invariants

• Refinement helps in proving invariants

• The choice of the good abstraction is not very simple and is a
challenge by itself
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Summary on refinement

• Refining means making models more deterministic

• Refining means adding new variable and new events

• Refining is simulating

• Refining preserves safety properties of the refined model.

• The very abstract model is crucial.

• The process should be incremental to make proofs easier for the
proof tool.

• Problem : Preserving the liveness properties
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