

Modelling Software-based Systems Lecture 4 System Engineering using Refinement-based Methodology

Dominique Méry Telecom Nancy,Université de Lorraine

> 21 novembre 2024 dominique.mery@loria.fr

Master Informatique 2024-2025 (Dominique Méry)

<ロ > < />

1 Refinement of models

2 Summary on Event-B

3 The Access Control

4 Conclusion

Master Informatique 2024-2025 (Dominique Méry)

<ロト
・< => < => < => 2/97 の< ()

Current Summary

1 Refinement of models

- **2** Summary on Event-B
- **3** The Access Control
- **4** Conclusion

- Refinement relates Event-B models
- Problem for starting a refinement-based development
- Problem for finding the best abstract model
- Problem for discharging unproved proof obligations generated for each refinement step

• The Access Control Problem

1 Refinement of models

2 Summary on Event-B

3 The Access Control

4 Conclusion

<ロト
・< => < => < => 5/97 のへで

- An event of the simple form is denoted by :

```
\langle event\_name \rangle \cong
WHEN
\langle condition \rangle
THEN
\langle action \rangle
END
```

where

- $< event_name > is an identifier$
- < condition > is the firing condition of the event
- < action > is a generalized substitution (parallel "assignment")

- An event of the non-deterministic form is denoted by :

```
< event\_name > \widehat{=}
ANY < variable > WHERE
< condition >
THEN
< action >
END
```

where

- $< event_name > is an identifier$
- < variable > is a (list of) variable(s)
- $< \ensuremath{\mathit{condition}}\xspace >$ is the firing condition of the event
- < action > is a generalized substitution (parallel "assignment")

A generalized substitution can be

- Simple assignment : x := E
- Generalized assignment : x : P(x, x')
- Set assignment : $x :\in S$

- Parallel composition : ····

,

$\begin{array}{rcl} \mathsf{INVARIANT} & \wedge & \mathsf{GUARD} \\ \Longrightarrow \\ \mathsf{ACTION} \ \textbf{establishes} \ \mathsf{INVARIANT} \end{array}$

・ロト・日本・モン・モン・9/97 のへで

- Given an event of the simple form :

EVENT e
$$\widehat{=}$$

WHEN
 $G(x)$
THEN
 $x := E(x)$
END

and invariant I(x) to be preserved, the statement to prove is :

$$I(x) \land G(x) \implies I(E(x))$$

Master Informatique 2024-2025 (Dominique Méry)

- Given an event of the simple form :

EVENT e
$$\widehat{=}$$

WHEN
 $G(x)$
THEN
 $x : |P(x, x')$
END

and invariant I(x) to be preserved, the statement to prove is :

$$I(x) \wedge G(x) \wedge P(x, x') \implies I(x')$$

Master Informatique 2024-2025 (Dominique Méry)

- Given an event of the simple form :

EVENT e
$$\widehat{=}$$

WHEN
 $G(x)$
THEN
 $x :\in S(x)$
END

and invariant I(x) to be preserved, the statement to prove is :

$$I(x) \land G(x) \land x' \in S(x) \implies I(x')$$

- Given an event of the non-deterministic form :

```
EVENT e \cong
ANY v WHERE
G(x, v)
THEN
x := E(x, v)
END
```

and invariant I(x) to be preserved, the statement to prove is :

$$I(x) \land G(x,v) \implies I(E(x,v))$$

Master Informatique 2024-2025 (Dominique Méry)

- Abstract models works with variables $\boldsymbol{x},$ and concrete one with \boldsymbol{y}
- A gluing invariant J(x, y) links both sets of vrbls
- Each abstract event is refined by concrete one (see below)

- Some new events may appear : they refine "skip"
- Concrete events must not block more often than the abstract ones

- The set of new event alone must always block eventually

- Given an abstract and a corresponding concrete event

EVENT aeEVENT ceWHEN
G(x)
THEN
x := E(x)
ENDH(y)
THEN
y := F(y)
END

and invariants I(x) and J(x, y), the statement to prove is :

$$I(x) \ \land \ J(x,y) \ \land \ H(y) \implies G(x) \ \land \ J(E(x),F(y))$$

Master Informatique 2024-2025 (Dominique Méry)

- Given an abstract and a corresponding concrete event

EVENT ae $\widehat{=}$ ANY v WHERE G(x, v)THEN x := E(x, v)END EVENT ce $\widehat{=}$ ANY w WHERE H(y, w)THEN y := F(y, w)END

$$\begin{array}{rcl} I(x) & \wedge & J(x,y) & \wedge & H(y,w) \\ \Longrightarrow \\ \exists v \cdot (G(x,v) & \wedge & J(E(x,v),F(y,w))) \end{array}$$

Correct Refinement Verification (3)

- Given a NEW event

EVENT ce
$$\widehat{=}$$

WHEN
 $H(y)$
THEN
 $y := F(y)$
END

and invariants I(x) and J(x, y), the statement to prove is :

$$I(x) \ \land \ J(x,y) \ \land \ H(y) \implies \ J(x,F(y))$$

1 Refinement of models

2 Summary on Event-B

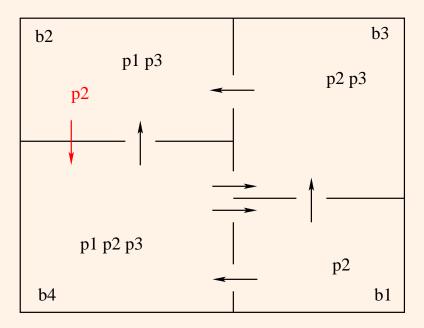
3 The Access Control

4 Conclusion

Master Informatique 2024-2025 (Dominique Méry)

<ロト
・< 日 ト< 日 ト< 日 ト< 日 ト
・< 日 ト
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

- To control accesses into locations.
- People are assigned certain authorizations
- Each person is given a magnetic card
- Doors are "one way" turnstyles
- Each turnstyle is equipped with :
 - a card reader
 - two lights (one green, the other red)



- Sharing between Control and Equipment
- For this : constructing a closed model
- Defining the physical environment
- Possible generalization of problem
- Studying safety questions
- Studying synchronisation questions
- Studying marginal behaviour

- P1 : The model concerns people and locations
- P2 : A person is authorized to be in some locations
- P3 : A person can only be in one location at a time
- D1 : Outside is a location where everybody can be
- P4 : A person is always in some location
- P5 : A person is always authorized to be in his location

Example

Sets

Authorizations

p1	12,	14	
p2	1,	13,	14
р3	12,	13,	14

Correct scenario

p1	4		p1	12]	p1	12		p1	14		p1	14
p2	4	\rightarrow	p2	14	\rightarrow	p2	1	\rightarrow	p2	1	\rightarrow	p2	1
р3	14		р3	14		р3	14		р3	14		p3	13

$\begin{array}{l} \mbox{Basic sets}: \mbox{persons } P \mbox{ and locations } B \mbox{ (prop. P1)} \\ \mbox{Constant}: \mbox{ authorizations } A \mbox{ (prop. P2)} \\ A \mbox{ is a binary relation between } P \mbox{ and } B \end{array}$

$$A \ \in \ P \leftrightarrow B$$

Constant : outside is a location where everybody is authorized to be (decision D1)

 $outside \in B$

 $P \times \{outside\} \subseteq A$

 $\begin{array}{l} \mbox{Variable}: \mbox{situations } {\rm C} \mbox{ (prop. P3 and P4)} \\ {\rm C} \mbox{ is a total function between } {\rm P} \mbox{ and } {\rm B} \\ \mbox{A total function is a special case of a binary relation} \end{array}$

 $c\in P\to B$

Invariant : situations compatible with auth. (prop. P5) The function C is included in the relation A

$$\mathbf{C}\subseteq\mathbf{A}$$

A magic event which can be observed

- GUARD : $\begin{cases} \text{ Given some person } p \text{ and location } l \\ p \text{ is authorized to be in } l : p, l \in \mathbf{A} \\ p \text{ is not currently in } l : C(p) \neq l \end{cases}$
- ACTION : p jumps into l

```
 \begin{array}{l} \text{EVENT observation1} \\ \widehat{} \\ \text{ANY } p, l \text{ WHERE} \\ p \in P \land \\ l \in B \land \\ p \mapsto l \in A \land \\ c(p) \neq l \\ \text{THEN} \\ c(p) := l \\ \text{END} \end{array}
```

Given two relations a and bOverriding a by b yields a new relation $a \triangleleft b$

$$a \triangleleft b \quad \widehat{=} \quad (\mathsf{dom}\,(b) \triangleleft a) \ \cup \ b$$

Abbreviation

$$f(x) := y \quad \widehat{=} \quad f := f \mathrel{\triangleleft} \{x \mapsto y\}$$

INVARIANT \land GUARD \implies ACTION establishes INVARIANT $\mathbf{C} \subset \mathbf{A} \wedge$ $p \in \mathbf{P} \wedge$ $l \in \mathbf{B} \wedge$ $p \mapsto l \in \mathbf{A}$ \implies $(\{p\} \triangleleft C) \cup \{p \mapsto l\} \subset A$

P6 : The geometry define how locations communicateP7 : A location does not communicate with itselfP8 : Persons move between communicating locations

 $\begin{array}{l} \mbox{Constant}: \mbox{communication STRUCTURE (prop. P6 and P7)} \\ \mbox{STRUCTURE is a binary relation between B} \\ \mbox{The intersection of STRUCTURE with the identity relation on} \\ \mbox{B is empty} \end{array}$

STRUCTURE $\in B \leftrightarrow B$

STRUCTURE \cap id(B) = \varnothing

Correct Refinement Verification (reminder)

Concrete events do not block more often than abstract ones

$$\begin{array}{rcl} I(x) & \wedge & J(x,y) & \wedge \\ \text{disjunction of abstract guards} \\ \Longrightarrow \\ \text{disjunction of concrete guards} \end{array}$$

New events block eventually (decreasing the same quantity V(y))

$$I(x) \ \land \ J(x,y) \ \land \ H(y) \ \land \ V(y) = n \implies V(F(y)) < n$$

Event (prop. P8) The guard is strengthened The current location of p and the new location l must communicate

$$\begin{array}{l} \text{EVENT observation1} \\ \widehat{} \\ \text{ANY } p, l \text{ WHERE} \\ p \in P \land \\ l \in B \land \\ p \mapsto l \in A \land \\ C(p) \neq l \\ \text{THEN} \\ C(p) := l \\ \text{END} \end{array}$$

 $\begin{array}{l} \text{EVENT observation2} \cong \\ \textbf{REFINES} observation1 \\ \textbf{ANY } p, l \ \textbf{WHERE} \\ p \in P \land \\ l \in B \land \\ p \mapsto l \in A \land \\ \textbf{c}(p) \mapsto l \in \text{STRUCTURE} \\ \textbf{THEN} \\ \textbf{c}(p) := l \\ \textbf{END} \end{array}$

Invariant preservation : Success Guard strengthening : Success

 $\begin{array}{l} \exists \, (p,l) \cdot \big(\, p \mapsto l \, \in \, \mathbf{A} \ \land \ \mathbf{C}(p) \mapsto l \, \in \, \mathrm{STRUCTURE} \, \big) \\ \Rightarrow \\ \exists \, (p,l) \cdot \big(\, p \mapsto l \, \in \, \mathbf{A} \ \land \ \mathbf{C}(p) \neq l \, \big) \end{array}$

Deadlockfreeness : Failure

$$\exists (p,l) \cdot (p \mapsto l \in A \land C(p) \neq l) \Rightarrow \exists (p,l) \cdot (p \mapsto l \in A \land C(p) \mapsto l \in \text{STRUCTURE})$$

Master Informatique 2024-2025 (Dominique Méry)

P9 : No person must remain blocked in a location. Solution

P10 : Any person authorized to be in a location must also be authorized to go in another location which communicates with the first one.

$$A \subseteq A$$
; structure⁻¹

$$p \mapsto l \in \mathbf{A} \implies \exists m \cdot (p \mapsto m \in \mathbf{A} \land l \mapsto m \in \mathbf{STRUCTURE})$$

Example

p1	12	p2	14
p1	14	р3	12
p2	1	p3	13
p2	13	p3	14

1	13
1	14
13	12
14	1
4	12
14	13

1	4
12	13
12	14
13	1
13	14
4	1

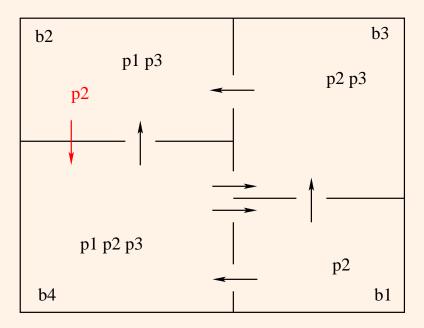
p1	1	p
p1	3	p
p1	4	p
p2	1	p

А

A; STRUCT

STRUCTURE STRUCTURE⁻¹

- Opening a door between I2 and I4
- Authorizing p2 to go to l2



Solution

					1	3	1	1	4			
			14		11	-		10		p1	1	p2
pı	12	p2	- 14		11	4		12	13	p1	12	p2
p1	4	p3	2		2	4		2	4	P1		
	11	· ·	12		12	10		12	11	p1	3	p3
p2	11	р3	13		13	12		3	1	p1	14	p3
p2	12	p3	4		14	1		3	14	•		
· ·		P -			14	10				p2	1	p3
p2	13				14	12		14	1	p2	12	p3
				4	13		4	12	P2	12	P2	
	Į						$\Delta \cdot \mathbf{g}$	TDU	TURE			
ę				S	STRUCTURE STRUCTURE ⁻¹ A, SIR				inot	TORE		

Decision

 $\mathsf{D2}:\mathsf{The}$ system that we are going to construct does not guarantee that people can move "outside".

Constante : exit is a function, included in com, with no cycle

$$exit \in \mathbf{B} - \{outside\} \to \mathbf{B}$$
$$exit \subseteq com$$
$$\forall s \cdot (s \subseteq \mathbf{B} \implies (s \subseteq exit^{-1}[s] \implies s = \emptyset))$$

$$\begin{array}{l} \forall x \cdot (x \in s \implies \exists y \cdot (y \in s \land (x, y) \in exit)) \\ \Longrightarrow \\ s = \varnothing \end{array}$$

exit is a tree spanning the graph represented by com

P10' : Every person authorized to be in a location (which is not "outside") must also be authorized to be in another location communicating with the former and leading towards the exit.

$$A \triangleright \{outside\} \subseteq A; exit^{-1}$$

$$p \mapsto l \in \mathcal{A} \land$$
$$l \neq outside$$
$$\implies$$
$$p \mapsto exit(l) \in \mathcal{A}$$

Show that no cycle implies the possibility to prove property by induction and vice-versa

$$\begin{array}{l} \forall s \cdot (s \subseteq \mathbf{B} \land s \subseteq exit^{-1}[s] \implies s = \varnothing) \\ \Leftrightarrow \\ \forall t \cdot (t \subseteq \mathbf{B} \land outside \in t \land exit^{-1}[t] \subseteq t \implies t = \mathbf{B}) \end{array}$$

$$t \subseteq B$$

$$outside \in t$$

$$\forall (x, y) \cdot ((x \mapsto y) \in exit \land y \in t \implies x \in t)$$

$$\Longrightarrow$$

$$t = B$$

Master Informatique 2024-2025 (Dominique Méry)

- P11 : Locations communicate via one-way doors.
- P12 : A person get through a door only if accepted.
- P13 : A door is acceptable by at most one person at a time.
- P14 : A person is accepted for at most one door only.
- P15 : A person is accepted if at the origin of the door.
- P16 : A person is accepted if authorized at destination.

Set : the set DOORS of doors Constants : The origin ORG and destination DST of a door (prop. P11)

 $\begin{array}{l} \mathrm{ORG} \, \in \, \mathrm{doors} \rightarrow \mathrm{B} \\ \mathrm{DST} \, \in \, \mathrm{doors} \rightarrow \mathrm{B} \\ \mathrm{structure} \, = \, (\mathrm{ORG}^{-1} \ ; \, \mathrm{DST}) \end{array}$

Variable : the rel. $\ensuremath{\mathsf{DAP}}$ between persons and doors (prop. P12 to P16)

 $\begin{array}{ll} \text{dap} \ \in \ P \rightarrowtail \text{doors} \\ (\text{dap} \ ; \ ORG) \ \subseteq \ c \\ (\text{dap} \ ; \ DST) \ \subseteq \ A \end{array}$

P17 : Green light of a door is lit when access is accepted.
P18 : When a person has got through, the door blocks.
P19 : After 30 seconds, the door blocks automatically.
P20 : Red light is lit for 2 sec.when access is refused.
P21 : Red and green lights are not lit simultaneously.

Definition : GREEN is exactly the range of DAP (prop. P17 to P19)

$$GREEN \ \widehat{=} \ ran(DAP)$$

Variable : The set *red* of red doors (prop. P20)

 $red \subseteq \text{doors}$

Invariant : GREEN and *red* are incompatible (prop. P21)

GREEN \cap *red* = \emptyset

 $\ensuremath{\mathsf{P22}}$: Person p is accepted through door d if

- \boldsymbol{p} is situated within the origin of \boldsymbol{d}
- \boldsymbol{p} is authorized to move to the dest. of \boldsymbol{d}
- \boldsymbol{p} is not engaged with another door

admitted $(p, d) \cong$ $ORG(d) = C(p) \land$ $p \mapsto DST(d) \in A \land$ $p \notin dom(dap)$

Accepting a person p - GUARD :

- $\left\{\begin{array}{l} \text{- Given some person } p \text{ and door } d \\ \text{- } d \text{ is neither green nor red} \\ \text{- } p \text{ is admissible through } d \end{array}\right.$
- ACTION : make p authorized to pass d

```
EVENT accept \widehat{=}
  ANY p, d WHERE
     p \in P \land
     d \in \text{DOORS} \land
     d \notin \text{GREEN} \cup \underline{red} \wedge
     admitted (p, d)
  THEN
     DAP(p) := d
  END
```

A New Event (2)

Refusing a person p- GUARD : - Given some person p and door d- d is neither green nor red - p is not admissible through d- ACTION : - lit the red light

```
EVENT refuse \widehat{=}
ANY p, d WHERE
p \in P \land
d \in DOORS \land
d \notin GREEN \cup red \land
\neg admitted (p, d)
THEN
red := red \cup \{d\}
END
```

```
EVENT observation2 \widehat{=}

ANY p, l WHERE

p \in P

l \in B

p, l \in A

C(p) \mapsto l \in \text{structure}

THEN

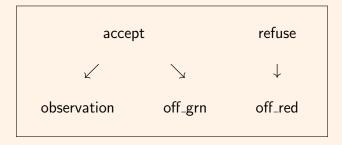
C(p) := l

END
```

EVENT observation3 $\widehat{=}$ REFINES observation2 ANY d WHERE $d \in \text{GREEN}$ THEN $C(\text{DAP}^{-1}(d)) := \text{DST}(d)$ DAP := DAP $\triangleright \{d\}$ END

Turning lights off

EVENT off.grn $\widehat{=}$ ANY d WHERE $d \in \text{GREEN}$ THEN DAP := DAP \triangleright {d} END EVENT off_red \cong ANY d WHERE $d \in red$ THEN $red := red - \{d\}$ END



- Event observation is a correct refinement : OK
- Other events refine skip : OK
- Event observation does not deadlock more : OK
- New events do not take control indefinitely : FAILURE

<ロ > < 団 > < 団 > < 三 > < 三 > 56/97 のへで

DANGER

- People without the required authorizations try indefinitely to enter some locations.
- Other people with the authorization always change mind at the last moment. SOLUTIONS
- Make such practice impossible???
- Card Readers can "swallow" a card

D3 : The system we are going to construct will not prevent people from blocking doors indefinitely :

- either by trying indefinitely to enter places into which they are not authorized to enter,
- or by indefinitely abandoning "on the way" their intention to enter the places in which they are in fact authorized to enter.

A decision

- D4 : Each card reader is supposed to stay blocked between :
 - the sending of a card to the system
 - the reception of an acknowledgement.

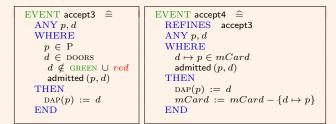
The set BLR of blocked Card Readers The set mCard of messages sent by Card Readers The set mAckn of acknowledgment messages

> $BLR \subseteq \text{DOORS}$ $mCard \in \text{DOORS} \Rightarrow P$ $mAckn \subseteq \text{DOORS}$

dom (mCard), GREEN, red, mAckn partition BLR

 $dom (mCard) \cup GREEN \cup red \cup mAckn = BLR$ $dom (mCard) \cap (GREEN \cup red \cup mAckn) = \emptyset$ $mAckn \cap (GREEN \cup red) = \emptyset$

$$\begin{array}{ll} \text{EVENT CARD} & \widehat{=} \\ & \text{ANY } p, d \\ & \text{WHERE} \\ p \in P \\ d \in \text{DOORS} - BLR \\ & \text{THEN} \\ & BLR := BLR \cup \{d\} \\ & mCard := mCard \cup \{d \mapsto p\} \\ & \text{END} \end{array}$$



<ロト
・< => < => 65/97 の<

```
EVENT off_grn \widehat{=}

ANY d WHERE

d \in \text{GREEN}

THEN

DAP := DAP \triangleright {d}

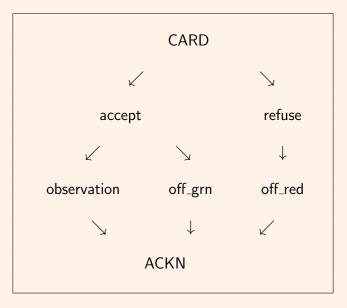
mAckn := mAckn \cup {d}

END
```

```
\begin{array}{l} \text{EVENT off.red} & \widehat{=} \\ & \text{ANY } d \text{ WHERE} \\ & d \in red \\ & \text{THEN} \\ & red := red - \{d\} \\ & mAckn := mAckn \cup \{d\} \\ & \text{END} \end{array}
```

Master Informatique 2024-2025 (Dominique Méry)

EVENT ACKN \triangleq ANY d WHERE $d \in mAckn$ THEN $BLR := BLR - \{d\}$ $mAckn := mAckn - \{d\}$ END



Decisions

D5 : When a door has been cleared, it blocks itself automatically without any intervention from the control system.

- D6 : Each door incorporates a local clock for
 - the extinction of the green light after 30 sec.
 - the extinction of the red light after 2 sec.

The set mAccept of acceptance messages (to doors) The set GRN of physical green doors The set mPass of passing messages (from doors) The set $mOff_grn$ of messages (from doors)

 $mAccept \subseteq \text{DOORS}$

 $GRN \subseteq \text{doors}$

 $mPass \subseteq \text{doors}$

 $mOff_grn \subseteq \text{DOORS}$

mAccept, GRN, mPass, mOff_grn partition grn

$$\begin{split} mAccept \ \cup \ GRN \ \cup \ mPass \ \cup \ mOff_grn \ = \ grn \\ mAccept \ \cap \ (GRN \ \cup \ mPass \ \cup \ mOff_grn) \ = \ \varnothing \\ GRN \ \cap \ (mPass \ \cup \ mOff_grn) \ = \ \varnothing \\ mPass \ \cap \ mOff_grn \ = \ \varnothing \end{split}$$

The set mRefuse of messages (to doors) The set \underline{RED} of phyical red doors The set $mOff_red$ of messages (from doors)

 $mRefuse \subseteq DOORS$

 $RED \subseteq DOORS$

 $mOff_red \subseteq DOORS$

mRefuse, RED, mOff_red partition red

 $mRefuse \ \cup \ RED \ \cup \ mOff_red \ = \ red$ $mRefuse \ \cap \ (RED \ \cup \ mOff_red) \ = \ \varnothing$ $RED \ \cap \ mOff_red \ = \ \emptyset$

Master Informatique 2024-2025 (Dominique Méry)

$$\begin{array}{l} \text{EVENT accept} & \widehat{=} \\ & \text{ANY } p, d \text{ WHERE} \\ & d, p \in mCard \land \\ & \text{admitted} (p, d) \\ & \text{THEN} \\ & \text{DAP}(p) := d \\ & mCard := mCard - \{d \mapsto p\} \\ & mAccept := mAccept \cup \{d\} \\ & \text{END} \end{array}$$

$\begin{array}{l} \text{EVENT ACCEPT} & \widehat{=} \\ \text{ANY } d \text{ WHERE} \\ d \in mAccept \\ \text{THEN} \\ GRN := GRN \cup \{d\} \\ mAccept := mAccept - \{d\} \\ \text{END} \end{array}$

<ロト
・< => < => < => 75/97 の< ()

$$\begin{array}{l} \text{EVENT PASS} \ \widehat{=} \\ \text{ANY } d \text{ WHERE} \\ d \in GRN \\ \text{THEN} \\ GRN := GRN - \{d\} \\ mPass := mPass \cup \{d\} \\ \text{END} \end{array}$$

EVENT off_grn
$$\widehat{=}$$

ANY d WHERE
 $d \in mOff_grn$
THEN
DAP := DAP \triangleright {d}
 $mAckn := mAckn \cup$ {d}
 $mOff_grn := mOff_grn -$ {d}
END

<ロト</th>
・< = > < = > 79/97 の<</th>

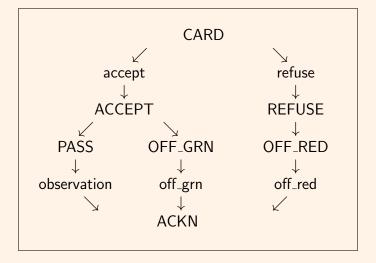
EVENT REFUSE
$$\widehat{=}$$

ANY d WHERE
 $d \in mRefuse$
THEN
 $RED := RED \cup \{d\}$
 $mRefuse := mRefuse - \{d\}$
END

$$\begin{array}{l} \text{EVENT OFF_RED} & \cong \\ \text{ANY } d \text{ WHERE} \\ d \in RED \\ \text{THEN} \\ RED := RED - \{d\} \\ mOff_red := mOff_red \cup \{d\} \\ \text{END} \end{array}$$

EVENT off_red
$$\widehat{=}$$

ANY d WHERE
 $d \in mOff_red$
THEN
 $red := red - \{d\}$
 $mAckn := mAckn \cup \{d\}$
 $mOff_red := mOff_red - \{d\}$
END



Communications

Hardware		Network		Software
CARD	\rightarrow	mCard	\rightarrow	{ accept (1) { refuse (2)
ACCEPT	\leftarrow	mAccept	\leftarrow	(1)
PASS	\rightarrow	mPass	\rightarrow	observation (3)
OFF_GRN	\rightarrow	$mOff_grn$	\rightarrow	off ₋ grn (3)
REFUSE	\leftarrow	mRefuse	\leftarrow	(2)
OFF_RED	\rightarrow	$mOff_red$	\rightarrow	off_red (3)
ACKN	\leftarrow	mAckn	\leftarrow	(3)

Decomposition (1)

Software Data

$$aut \in P \leftrightarrow B$$

ORG \in DOORS \rightarrow B
DST \in DOORS \rightarrow B
A \subseteq A; DST⁻¹; ORG
C \in P \rightarrow B

$$dap \in$$
 P \rightarrowtail DOORS
 $red \subseteq$ DOORS

Master Informatique 2024-2025 (Dominique Méry)

Decomposition (2)

Network data

$mCard \in \text{doors} \rightarrow P$
$mAckn \subseteq \text{doors}$
$mAccept \subseteq \text{doors}$
$mPass \subseteq \text{doors}$
$mOff_grn \subseteq \text{doors}$
$mRefuse \subseteq$ doors
$mOff_red \subseteq \text{doors}$

"Physical" Data

 $BLR \subseteq \text{doors}$

 $GRN \subseteq$ doors

 $RED \subseteq DOORS$

<ロト
・< => < => 88/97 のへで

EVENT test_soft(p, d)

EVENT accept_soft(p, d)

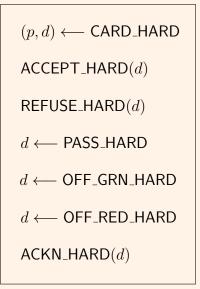
EVENT refuse_soft(d)

EVENT pass_soft(d)

EVENT off_grn_soft(d)

EVENT off_red_soft(d)

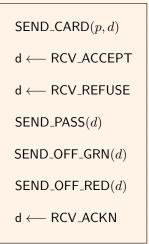
Physical Operations



Network Software Operations

$$(p, d) \longleftarrow read_card$$

write_accept (d)
write_refuse (d)
 $d \longleftarrow read_pass$
 $d \longleftarrow read_off_grn$
 $d \longleftarrow read_off_red$
write_ackn (d)



$$\begin{array}{l} \text{EVENT CARD} \hspace{0.2cm} \widehat{=} \\ \hspace{0.2cm} \text{VAR } p, d \hspace{0.2cm} \text{IN} \\ \hspace{0.2cm} (p, d) \longleftarrow \hspace{0.2cm} \text{READ} \text{-} \text{HARD}; \\ \hspace{0.2cm} \text{SEND} \text{-} \text{CARD} (p, d) \\ \hspace{0.2cm} \text{END} \end{array}$$

EVENT ACCEPT $\widehat{=}$ VAR d IN $d \longleftarrow$ RCV_ACCEPT; ACCEPT_HARD(d) END

VENTACKN =VAR d IN $d \leftarrow RCV_ACKN;$ $ACKN_HARD(d)$ END 22 Properties et 6 "System" Decisions - One Problem Generalization

- Access between locations
- One Negative Choice :
- Possible Card Readers Obstructions
- Three Physical Decisions
- Automatic Blocking of Doors
- Automatic Blocking of Card Readers
- Setting up of Clocks on Doors
- The overall development required 183 proofs

- 147 automatic (80%)
- 36 interactive

- **1** Refinement of models
- **2** Summary on Event-B
- **3** The Access Control
- **4** Conclusion

- Identify an abstract model
- Identify constants and states
- Identify components
- Plan the refinement
- Start as long as the model is not well defined !

< □ > < □ > < □ > < □ > < □ > < □ > 97/97