Tutorial Modelling Software-based Systems

Tutorial 1 : Specifying a problem using the Eevent-B modelling language Dominique Méry 21 novembre 2024

Exercice 1 ex1-tut1.zip

Express the following states machine using an Event B machines and check properties on the resulting models.

Exercice 2 *ex2-tut1.zip*

Express the following states machine using an Event B machines and check properties on the resulting models.

Exercice 3 to do

Express the following states machine using an Event B machines and check properties on the resulting models.

Exercice 4 *ex4-tut1.zip*

We consider a finite sequence of integers v_1, \ldots, v_n where n is the length of the sequence and is supposed to be fixed. Write an Event B specification modelling the computation of the value of the summation of the sequence v. You should define cerafully v, n and the summation of a finite sequence of integers.

Exercice 5 ex51-tut1.zip and ex52-tut1.zip

Express the following property in Event B:

- (ex51-tut1.zip) We assume to have p resources which may be shared by n processes. If a process uses a given resource, the resource can not be used by another process. A process can use only at most one resource.
- (ex52-tut1.zip) We assume to have p resources which may be shared by nmcs processes. If a process uses a given resource, the resource can not be used by another process. A process can use possibly more than one ressoyrce.

Exercice 6 ex6-tut1.zip

A Petri net is a uple R=(S,T,F,K,M,W)

- S is a finite set of places.
- *T* is a finite set of transitions.
- $S \cap T$ = Ø
- *F* is the flow relation : $F \subseteq S \times T \cup T \times S$
- K is expressing the capacity of each place : $K \in S
 ightarrow Nat \cup \{\omega\}$
- *M* is reprenting the initial marking of each place :
- $M \in S \rightarrow Nat \cup \{\omega\}$ and satisfies the following condition $\forall s \in S : M(s) \leq K(s)$.
- W is the weight of each edge :
 - $W \in F o Nat \cup \{\omega\}$

The state of a Petri net R is defined by a set of markings :

- a marking M for R is a function from S to $Nat \cup \{\omega\}$:
 - $M \in S \rightarrow Nat \cup \{\omega\}$ and it satisfies the condition $\forall s \in S : M(s) \leq K(s)$.
- a transition t of T is ready to fire for a marking M of R, if

1. $\forall s \in \{s' \in S \mid (s',t) \in F\}$: $M(s) \geq W(s,t).$

2.
$$\forall s \in \{ s' \in S \mid (t,s') \in F \}$$
:
 $M(s) \leq K(s) - W(s,t).$

— $t \in T : Pre(t) = \{s' \in S : (s',t) \in F\}$ and $Post(t) = \{s' \in S : (t,s') \in F\}$ The simulation of a Petri net is defined by a relation linking three elements : a marking M, a marking M' and a transition t as follows :

We consider the following Petri net :

Question 6.1 Translate this Petri net in Event B.

Question 6.2 Express safety properties that you can discover from the diagram.

Exercice 7 (ex7-tut1.zip) Nous considérons le modèle suivant.

MACHINEM1 VARIABLES
x INVARIANTS
END

On considère plusieurs cas pour l'invariant.

Question 7.1 (*M1*)

 $inv1: x \in \mathbb{Z}$ $inv3: x \le -1$

Est-ce que toutes les conditions de vérification sont prouvées par le prouveur de l'application Rodin ? Expliquez clairement pourquoi elles sont prouvées ou non.

Question 7.2 (*M2*)

 $\begin{array}{l} inv1: x \in \mathbb{Z} \\ inv3: x \leq -3 \end{array}$

Est-ce que toutes les conditions de vérification sont prouvées par le prouveur de l'application Rodin ? Expliquez clairement pourquoi elles sont prouvées ou non.

Question 7.3 (M3)

 $\begin{array}{l} inv1: x \in \mathbb{Z} \\ inv4: -45 \leq x \wedge x \leq -10 \end{array}$

*Est-ce que toutes les conditions d*e vérification sont prouvées par le prouveur de l'application Rodin ? Expliquez clairement pourquoi elles sont prouvées ou non.

```
Question 7.4 (M4)
```

 $inv1: x \in \mathbb{Z}$ $inv3: x \leq -3$ $inv4: -45 \leq x \land x \leq -10$ $inv2: x \leq -1$

*Est-ce que toutes les conditions d*e vérification sont prouvées par le prouveur de l'application Rodin ? Expliquez clairement pourquoi elles sont prouvées ou non.

Exercice 8 *ex8-tut1.zip*

A semaphore s is a shared variable accessible by two operations : P(s) and V(s. Informally, we can describe the effect of these two operations as follows :

- P(s) is testing if the value of s is greater than 0 and is not equal to 0. If the value of s is 0, the process which is executing P(s) is inserted in a queue.
- -V(s) is increasing the value of s by one, if the queue is non empty. If the queue is non empty, the first waiting process of the queue is awaken and becomes a lively process.

Using the Event B modelling features, describe a system using the primitives.

Exercice 9 *ex9-tut1.zip*

We assume that two $n \times n$ matrices of boolean values are given : A and B. Write an Event B specification modelling the multiplication of the two matrices.

Exercice 10 (ex10-1-tut1.zip and ex10-2-tut1.zip)

A system is used to sum two numbers x0 and y0 by adding one unit to a variable z. It includes an incx2z event which decreases the value of x by one and increases the value of z by one, and an incy2z event which decreases y by one and increases z by one. The overall process stops when the two variables x and y are zero.

Write a model in Event-B for the syste.