
Checking contracts in EventB

Dominique Méry

October 1, 2024

Abstract

Verification of program properties such as partial correctness (PC) or absence of errors
at runtime (RTE) applies induction principles using algorithmic techniques for checking
statements in a logical framework such as classical logic or temporal logic. Alan Turing
was undoubtedly the first to annotate programs, namely Turing machines, and to apply an
induction principle to transition systems. Our work is placed in this perspective of verifying
safety properties of programs which could be executed sequentially or in a distributed man-
ner, with the aim of presenting them as simply as possible to student classes in the context
of a posteriori verification. We report on an in vivo experiment using the Event-B language
and associated tools as an assembly and disassembly platform for correcting programs in
a programming language. We have adopted a contract-based approach to programming,
which we are implementing with Event-B . A few examples are given to illustrate this ped-
agogical approach as well as comments and observations. This step is part of a process of
learning both the underlying techniques and other tools such as Frama-C based on the same
ideas.

Keywords: Verification, Safety, Program Properties, Event-B

1

Contents
1 Introduction 3

2 Academic Context 4

3 Modelling and Programming Languages 6
3.1 Summary on Event-B . 6
3.2 Programming Constructs . 7

4 Programming by Contract 9

5 The Methodology in Action 12

6 Soundness and Completeness of the Methodology 13

7 Comments and Conclusion 16

A Archives of the Rodin projects for checking contracts 18
A.1 Example 1 . 18
A.2 Example 2 . 20
A.3 Example 3 . 22

B Sequence of C programs 23
B.1 Sequence 1 . 23
B.2 Sequence 2 . 25

2

M-ALGORITHM

C-CONTRACT pre/post specification

algorithm

FORMALISATION

TRANSLATION

FULFILMENTSEES

Figure 1: The verification pattern

1 Introduction
Programming by contract, as outlined in Meyer’s work [22], is based on a contract between
the software developer and software user. In Meyer’s terms, the supplier and the consumer are
linked by a contract, which expresses a link between a pair (precondition, postcondition) and a
possibly annotated algorithm. The objective is to utilise the Event-B modelling language [2]
as a framework for expressing verification conditions for contracts and to compare the resulting
Rodin-based tool to other existing automated verification tools, such as Frama-C [6]..This exer-
cise also introduces the Event-B language and the use of the Rodin [3] and Atelier-B [1, 5, 9]
environments.

Our current work is related to our lectures on modelling, designing, verifying and validating
software-based systems taught in the MsC Computer Science at Faculty of Science of the Uni-
versity of Lorraine and in the Computer Engineering Master of the School Telecom Nancy of the
University of Lorraine. The epistemological concepts were given using the classical blackboard
and chalk and progressively we have moved to integrate automated verification techniques and
tools such as Dafny [14], Why3 [23] and Frama-C [6]. Our list is not exhaustive and our idea
is to introduce progressively the concepts of verification using the Floyd-Hoare principle and to
show how students can develop a tool for their pet programming language.

Our main reference is the work of Patrick and Radhia Cousot [12] who analyse the (16)
different induction principles for proving program invariance properties. Figure 1 sketches the
main steps of our method:

• FORMALISATION Expression of the contract as assertions defined in an Event-B con-
text.

• TRANSLATION Translation of annotations as elements of the invariant and of the basic
computation steps between two successive labels as events.

The SEES clause is implemented in the Event-B modelling language by the Rodin plat-
form.

In [7], authors are describing a translation in a different way. They use the Dafny tool for
checking the Event-B context and machines. In our case, it is a matter of replacing Dafny and
making full use of Rodin and its associated provers. This is an important exercise for students
learning the Event-B notation, who will then be able to put the question of refinement into
practice. It is also a way to illustrate the use of proof checkers when dealing with proofs of
program properties. Finally, we found the way to write the proof checking using Event-B and
Rodin without toil.

Before we present the technical and formal elements, we must set out the framework for
this experiment. Its aim is to introduce formal methods into the academic curriculum and train
students in their use. The rest of the paper is organised as follow.

3

Section 2 gives the academic context. Section 3 introduces Event-B notations required
for expressing contracts; we give a short description of the small programming language used
for illustrating concepts. Section 4 introduces basic notations and concepts for programming
by contracts, the translation of a contract into an Event-B context and a Event-B machine.
Section 5 is giving several examples of contract for classical algorithms with comments on the
proof process. Finally we conclude and give some perspectives. The full version of the paper
with Rodin archives is available at the link1.

2 Academic Context
Our experimentation is long and began during the academic year 1983/1984 at the University
of Metz. As assistant professor, I taught tutorials on the Floyd-Hoare method, including the
treatment of sequential programming language concepts like pointers, functions, procedures,
etc. As professor, Patrick Cousot was my colleague and taught lectures on the same topics. Then
our paths diverged. From 1983 to 1993, I taught the same course as Patrick Cousot, who joined
the Ecole Polytechnique in 1984. I led a project based on the publications of Clarke, Emerson
and Sistla [8]. In this project, students implemented the method from this publication. One of
the projects carried out in Pascal on a Micral PC running DOS was a resounding success. It was
possible to verify temporal logic properties on finite transition systems. However, I remained
fascinated by the general case and finite models seemed limited.

At the time, we had created a verification tool for SDL programs in the CONCERTO en-
vironment using the young ISABELLE prover [21]. This experience convinced me of the use-
fulness of the tools and the feasibility of such an approach. My appointment as a professor at
the University of Nancy 1 in 1993 placed me once again in a new context: that of a computer
science engineering school. I was given the course called Models and Algorithms (MALG),
which covered computability, complexity, fixed-point theory (Kleene), propositional calculus,
first-order calculus, resolution, verification of algorithms and functional programming. It had
an hourly volume of 48 h 00 for lectures and 48 h 00 for tutorials. From 1988 to 1996, formal
modelling languages were the focus of my research activities and teaching on formal methods.
The CROCOS experiment [21] proposed a model of systems as a set of conditions/actions and
a linear temporal logic.

My teaching history has led me to make some important observations that will inform the
development of my teaching methods for formal methods: (1) It is clear that the MALG teaching
programme was not sufficiently based on tools and projects; (2) The concepts linked to the
semantics and logic of programs must be put in direct relation with the uses of programming
features; (3) A student of computer science must manage models of different types; and (4)
modelling remains an activity based on practice and the use of tools.

The MALG course is the first formal introduction to computer engineering training. It is
taken in the second year of the course. Students have already received basic training in computer
science in the first year, including mastery of a programming language, computer architecture
and databases. The second year builds on this and leads to a third year during which a formal
modelling course using the Event-B language is given. MALG is therefore a preparation for
this 24-hour formal modelling course. Lastly, the school’s students are recruited after a highly
selective competitive examination, following two years of preparation in preparatory classes for
entry to engineering schools. They are awarded a Master’s degree in computer science at the
end of their three years at the school. The number of students enrolled on the MALG course is

1https://mery54.github.io/fmt/

4

Listing 1: Function average
i n c l u d e <s t d i o . h>
i n c l u d e <l i m i t s . h>
i n t a v e r a g e (i n t a , i n t b)
{

re turn ((a+b) / 2) ;
}

i n t main ()
{

i n t x , y ;
x=INT MAX ; y=INT MAX ;
p r i n t f (” Average f o r %d

and %d i s %d\n ” , x , y ,
a v e r a g e (x , y)) ;

re turn 0 ;
}

Listing 2: Non testable Function

i n c l u d e <s t d i o . h>
i n c l u d e <s t d l i b . h>
i n c l u d e <t ime . h>

i n t main () {
i n t x , y ;
/ / Seed t h e random number
/ / g e n e r a t o r
/ / w i t h t h e c u r r e n t t i m e
s r a n d (t ime (NULL)) ;
/ / Genera te a random number
/ / be tween 1 and 100
x = rand () % 100 + 1 ;
/ / Per form some c a l c u l a t i o n s
y = x / (100 − x) ;
p r i n t f (” R e s u l t : %d\n ” , y) ;
re turn 0 ;

}

Figure 2: Two C programs for lectures

between 50 and 70; the number of third-year students on the formal modelling course is between
25 and 30.

The students have a good level of science but have chosen computer science to develop their
careers. By learning the basics of computer science, they are made aware of the issues sur-
rounding bugs in programs. However, a large number of comments indicate that they are often
unconcerned about run-time errors, the storage of information, and issues related to addresses in
programs. It is clear that modern programming languages have been able to protect users from
certain pitfalls associated with function or procedure calls and parameter passing mechanisms.
Amongst the students, one group is aiming to go further into the design of embedded systems,
using low-level computing techniques; my colleagues leave me free to choose the languages and
tools, but it is important to develop skills in model checking. Among the languages, there is the
C language used by Frama-c in an extended but ACSL-compatible form, as well as LUSTRE,
which was chosen to introduce the synchronous hypothesis, with tools from the VERIMAG
platform [17], as well as using the KIND2 tool [24].

In the first lesson we use examples of C programs to justify what we are going to introduce.
The C program of listing 1 of figure 2, for example, returns an unexpected value for almost all
the students. Only one or two students explain and predict the result. We then look at tests,
which are still not very well mastered; we then give an example of a non-testable program in
the listing 2, and show how Frama-c reacts by suggesting a condition. We give the sequence
of programs that we have developed from these two examples in the appendix to the complete
version (see https://mery54.github.io/fmt/) of this document.

In our paper, we will focus on the technical concepts that we have used to model programs,
but also on program properties and on the available software tools that implement analysis,
simulation and proof techniques. We will also comment on the tools used, which are not limited
to Rodin but are used jointly and in a complementary way.

To conclude this presentation of the academic context, we set out our pedagogical objectives
in relation to the targeted training course, which concerns the design of embedded or non-
embedded software systems with modelling, verification and validation. The challenge is to
teach the mastery of software modelling and its properties and the use of verification techniques,
in particular mathematical proof.

5

MACHINE
a

REFINES
am

SEES
co

VARIABLES
x

INVARIANTS
I(s, c, x)

THEOREMS
S(s, c, x)

VARIANT
V (s, c, x)

EVENTS
INIT

BEGIN
x : |(IP (s, c, x′))

END . . .
e

ANY α
WHERE
G(s, c, α, x)

THEN
x : |(P (s, c, α, x, x′))

END END

CONTEXTS
co

EXTENDS
aco

SETS
s

CONSTANTS
c

AXIOMS

AX(s, c) =

 . . .
ax : ax(s, c)
. . .

THEOREMS

TH(s, c) =

 . . .
th : th(s, c)
. . .

END

(1) Theorems(AX)
AX(s, c) ⊢ th(s, c)

(2) Theorems(TH)
AX(s, c), I(s, c, x) ⊢ S(s, c, x)

(3) Initialisation(INIT)
AX(s, c), IP(s, c, x′) ⊢ I(s, c, x′)

(4) Invariant(INV)
AX(s, c), I(x),

G(s, c, α, x),P(s, c, α, x, x′)
⊢ I(s, c, x′)

(5) Feasibility(FIS)
AX(s, c), I(s, c, x), G(s, c, α, x)
⊢ ∃x′ · P(s, c, α, x, x′)

Figure 3: Event-B structures: Context & Machine and Proof Obligations

3 Modelling and Programming Languages

3.1 Summary on Event-B
Event-B is a correct-by-construction, stated-based formal modelling language for system de-
sign [2]. First-order logic (FOL) and set theory underpin the Event-B modelling language. The
design process consists of a series of refinements of an abstract model (specification) leading
to a final concrete model. Refinement progressively contributes to add design decisions to the
system. We are not considering the refinement relation in this paper. Three components define
Event-B models: Contexts, Machines, and Theories. However, we will not use Theories [19]
and will not describe this concept.

A Context (Figure 3) is the static part of a model. It is used to set up definitions, axioms, and
theorems needed to describe required concepts. Carrier sets s defining algebraically new types
(possibly constrained in axioms or other extending contexts), constants c, axioms AX(s, c) and

6

theorems TH(s, c) are introduced.
A machine (Figure 3) describes the dynamic part of a model as a transition system. A set

of possibly parameterised and/or guarded events (transitions) modifying a set of state variables
(state) represents the core concepts of a machine. Variables x, invariants I(s, c, x), theorems
S(s, c, x), variants V (x), and events Event e (possibly guarded by G and/or parameterised by
α) are defined in a machine. Invariants and theorems formalise system safety properties while
variants define convergence properties (reachability).

Before-After Predicates (BAP) express state variables changes using prime notation x′ to
record the new value of a variable x after a change. The “becomes such that” :| substitu-
tion is used to define the next (transition or event) value of a state variable. We write x :|
P(s, c, α, x, x′) to express that the next value of x (denoted by x′) satisfies the predicate P (s, c, α, x, x′)
defined on before and after values of variable x. When a parameter α is involved in a variable
the BAP is expressed as x :| P(s, c, α, x, x′).

To establish the correctness of an Event-B machine, POs (automatically generated from the
calculus of substitutions) need to be proved.

The main proof obligations (POs), relevant for this paper, are listed in the table of figure 3.
They require to demonstrate the context and machine theorems (1,2), initialisation (3), invariant
preservation (4) and event feasibility (5).

Rodin2 is an open source, Eclipse-based Integrated Development Environment for modelling
in Event-B . It offers resources for model editing, automatic PO generation, project manage-
ment, refinement, proof, model checking, model animation, and code generation. Event-B
theories extension is available in the form of a plug-in, developed for the Rodin platform. Many
provers like predicate provers, SMT solvers, are plugins for Rodin.

Comments and observations 1. The main difficulty in modelling with Event-B is that the
modelling language is very abstract and the notation x : |R(s, c, x, x′) is very general. Set
theory allows a certain amount of freedom in modelling, in particular to express relationships
between values that are not always computable. For example, an Event-B variable corresponds
to a state of an algorithm or an observed program, but this variable is by nature perdurant or
flexible; it has a current value, an initial value and sometimes a final value. The term ”variable”
is in fact very overloaded and a distinction must be made between these perdurable vqriables
and the variables of logical formalims. We separate the initial values from the variables by
deciding to use an index 0 or f, where x0 is the initial value of x and xf is the final value of x.
The ACSL language can be used to designate variable values at given points, and it is important
to unpack or dissect these concepts before using them effectively. The introduction of Event-B
was in response to a comment made by students who were first introduced to TLA+ using the
ToolBox (or VSCode) platform and who had to write lists of definitions that were tested using
the platform’s model checker. The PlusCal language has made the use of TLA concepts more
transparent, but our objective is still to learn a language in two stages: firstly, to check or
describe algorithms, and then to use it as a modelling language, but with model correctness
through refinement. The aim is to train students to manipulate formal concepts using IT tools.

3.2 Programming Constructs
Programming constructs are classical constructs as assignment (v := fell,ℓ′(v)), skip statement
skip, conditional statement (if cond(v) S1 else S2 fi) and iterative statement (while cond(v) do S od
). We use these constructs for expressing programs or algorithms which are annotated possibly
by labels.

2http://www.event-b.org/index.html

7

ℓ0 :
k := 0;
ℓ1 :
co := 0;
ℓ2 :
while (k < n) do

ℓ3 :
if (k %2 == 0)

ℓ4 :
co := co+ k + 1;

fi;
ℓ5 :

k := k + 1;
od;

ℓ6 :
ro := co;

ℓ5 :

There different ways to annotate algorithms. One can as-
sign a label ℓ ∈ L to each statement:

• v := fell,ℓ′(v) is labelled as follow
ℓ :

v := fℓ,ℓ′(v);

• if cond(v) S1 else S2 fi is labelled as follow
ℓ :
if cond(v) S1 else S2 fi

• while cond(v) do S od is labelled as follow
ℓ :
while cond(v) do S od

The annotation process uses one label at most one time.
For instance, the following annotation of a small algo-
rithm is a small example in the left box.

Each pair of successive labels ℓ, ℓ′ is interpreted by a condition denoted condℓ,ℓ′(v) and an
assignment v := fℓ,ℓ′(v). A flowchart can be derived following the next diagram:

ℓ : ℓ′ :
condℓ,ℓ′(v) → v := fℓ,ℓ′(v)

In our paper, we assume that the programming language is PL and one can derive a flowchart
from the annotated algorithmic notation.

Comments and observations 2. Initially we used examples borrowed from Manna [20], which
uses flowcharts and a structured language to describe algorithms. This book is very compre-
hensive and gives an overview of important topics in theoretical computer science, and is still
useful for students. The course consists of translating some flowcharts into TLA notation by
hand, then doing the same with algorithms in structured form, and finally experimenting with
PlusCal. The course therefore starts by gradually learning how to translate a model and then
to check the model obtained for correctness properties such as partial correctness or absence
of errors at runtime. During this phase, students learn the relationship between non-primed
and primed variables, as well as set notation. Students first discover TLA/TLA+ through the
ToolBox tool [16] , which allows them to write state transformations in a modelling language
that includes set theory. The students quickly understood the limitations of the model checking
tool and the advantages of parametrisation by a constant. It’s a question of convincing with
effective tools, and it’s clear that the Rodin tool hides the induction stages with a list of proof
obligations, which we’ll come back to. Our idea is also to train students in the design of a
method for proving program properties for their programming language.

It could be argued that the TLA+ ToolBox platform [16] provides a powerful and effective
proof tool based on Isabelle/HOL and SMT solvers, but the problem is that its use requires
a greater effort on the part of the student, who has to manage the generation of verification
conditions himself. In fact, the Event-B language describes a model which must be inductive
and which describes the observations of changes of state of the variables in the model.

8

4 Programming by Contract
Programming by contract [22] is based on a contract between the software developer and soft-
ware user - in Meyer’s terms the supplier and the consumer. Every process starts with a precon-
dition that must be satisfied by the consumer and it ends with postconditions which the supplier
guarantees to be true (if and only if the precondition was met). The contract is defined by two
assertions a precondition and a postcondition; the algorithm is annotated. The postcondition
establishes a relation between the initial values of variables and the final values of variables.

We use two languages a programming or algorithmic language PL for expressing algo-
rithms and an assertion language denoted AL for expressing annotations. A contract is a pair
(pre(v0), post(v0, vf) where pre(v0) states the specification of input values denoted v0 and v0
is the initial value of the variable v. post(v0, vf) is the relation between the initial values v0 of
v. and the final values of v.

We adopt a convention to make our explanation as clear as possible and we will denote
non-logical (or computer or flexible [18]) variables by strings using the font as v, Tax, Re-
sult, . . . and logical variables by strings using the font as v, Tax, Result, . . . The convention
is adapted from Patrick Cousot’s comments [10] on making a distinction between a value of a
computer variable and the computer variable itself.

A program or an algorithm P over variables v fullfills a contract (pre(v0), post(v0, vf),
when:

• P transforms a non-logical variable v from an initial value v0 to a final value vf : v0
P−→ vf

• v0 satisfies pre: pre(v0) and vf satisfies a relation post : post(v0, vf)

• pre(v0) ∧ v0
P−→ vf ⇒ post(v0, vf)

We will denote a contract for P as follows.

contract P
variables v
requires pre(v0)
ensures post(v0, vf)

The contract has a name which is the name of the pro-
gram under construction. That program may be implicit
or explicit. It may be a program which is not yet existing
and we may follow the refinement-based approach or a
direct construction.

As pointed out by C. Jones in his speech accepting the FM fellow, a postcondition is a rela-
tion between the current value of variables and their initial values. P. and R. Cousot [11, 12]
give detail on induction principles of the proposed methods as Hoare, Manna . . . and partition
invariance proof methods into assertional ones and relational ones; they explain how they are
related using a cube representation and Galois connections for expressing these relationships.
We consider the following general interpretation of P (x) by expressing it as x ∈ P̃ from a
correspondance between a predicate and the set of values validating this predicate. For ease of
syntax we leave out the˜ symbol.

Comments and observations 3. We highlight the elements that characterise a contract and
emphasise the importance of the initial and final values of flexible variables. Students will be
introduced to the question of what to compute and what not to compute. The post-condition
is a relationship between initial and final values. A distinction is made between logical and
non-logical variables. Finally, it is important to justify the link between this contract and the
algorithm in question (the how). This stage justifies the principles of induction and highlights
the theory of fixed-points on complete lattices. We emphasise the notion of computability as-
sociated with the algorithm. A set of verification conditions is derived from this induction and

9

used to verify the annotations. At this point we talk about the connection with the strongest
invariant and we obtain the Floyd-Hoare verification conditions.

CONTEXT C0
SETS

D
CONSTANTS

v0, vf, post, pre
AXIOMS

def1 : pre ⊆ D
def2 : post ⊆ D ×D
pre(v0) : v0 ∈ pre
post(v0, vf) : v0 7→ vf ∈ post

END

The translation in Rodin is simple and
we have to define the domain of variables
namely D. We have chosen a general form.
The context is used for expressing the-
orems required for deriving the postcon-
dition. The context SQUARE-C0 corre-
sponds to the contract for computing the
square of a positive integer. In this case,
we have to define a sequence which is sup-
porting the computation of the square of a
natural number.

Example 4.1. Contract in Event-B for square computation

CONTEXT SQUARE − C0
CONSTANTS

n0, r0, nf, rf
AXIOMS

pre(n0, r0) : n0 ∈ N ∧ r0 ∈ Z

post(n0, r0, nf, rf) :
nf = n0
rf = n0 ∗ n0

END

The contract SQUARE is express-
ing the relation of computation of the
square of n.

contract SQUARE
variables n,r
requires n0 ∈ N ∧ r0 ∈ Z

ensures
nf = n0
rf = n0 ∗ n0

A contract can be extended by the definition of an algorithmic section which is describing the
computation process itself. The annotation of the algorithmic section is not required but it can
help the proof process and it will be generally checked using verification conditions following
the Floyd-Hoare method [13, 15]. The contract is stated and a code is added.

contract P
variables v
requires pre(v0)
ensures post(v0, vf)

begin
0 : P0(v0, v)
S0
. . .
i : Pi(v0, v)
. . .
Sf−1

f : Pf (v0, v)
end

Verification conditions are listed as follows:

• (initialisation)
pre(v0) ∧ v = v0 ⇒ P0(v0, v)

• (finalisation)
pre(v0) ∧ Pf (v0, v) ⇒ post(v0, v)

• (induction)
For each labels pair ℓ, ℓ′

such that ℓ −→ ℓ′, one checks that,
for any value v, v′ ∈ D (

pre(v0) ∧ Pℓ(v0, v))
∧condℓ,ℓ′(v) ∧ v′ = fℓ,ℓ′(v)

)
⇒ Pℓ′(v0, v

′)

,

Three kinds of verification conditions should be checked and we
justify the method in the full version..

The method checks that the annotation denoting verification is correct. An Event-B ma-
chine (see Fig. 4) is built from the extended contract.

The machine M (Fig. 4) has variables as v for modelling v and we add a control variable
pc whose values are in L. For each label ℓ, one adds an implication defining the current state,

10

MACHINE M
SEES C0
VARIABLES

v, pc
INVARIANTS

typing : v ∈ D
control : pc ∈ L
. . .
atℓ : pc = ℓ ⇒ Pℓ(v0, v)
. . .

th1 : pre(v0) ∧ v = v0 ⇒ P0(v0, v)
th2 : pre(v0) ∧ Pf (v0, v)

⇒ post(v0, v)
. . .
END
. . .
END

MACHINE M
EVENTS
INITIALISATION
BEGIN

(pc, v) : |
(

pc′ = l0 ∧ v′ = v0
∧pre(v0)

)
END
. . .
e(ℓ, ℓ′)

WHEN
pc = ℓ
condℓ,ℓ′(v)

THEN
pc := ℓ′

v := fℓ,ℓ′(v)
END

. . .
END

Figure 4: Event-B machine for checking contract

when, the control is at ℓ. The initialisation of the variables is defined by the precondition and
the initial possible values v0. Events are defined for each pair of labels (ℓ, ℓ′) and is modelling
the flowchart derived from the algorithm. In Section 5, we give examples which illustrate the
methodology.

Comments and observations 4. We translated the verification conditions derived from our
strongest invariant given by the fixed-point definition. Then we derived a set of annotations
for verifying the algorithm against the contract, but this is just a translation of what we’ve
been doing for many years and it came across as very natural and immediate during a tutorial.
The idea was to try this translation and this communication translates this episode. But from a
contract point of view, we can use the ACSL language, which can be used to express all the above
concepts and which is equipped with a Frama-c verification tool with the wp plugin. We could
stop there, but the story continues. In fact, the wp plugin uses the wp calculation to generate the
verification conditions. This leads us to introduce the students to the wp calculation in its two
forms, depending on whether we are considering total or partial correctness. It turns out that
the wp plugin analyses the contract according to the Hoare logic system and we must therefore
show the equivalence of the two approaches Floyd-Hoare and wp. In the short version, we omit
the proof of correctness of our method but the students’ understanding depends on the use of
the wp calculus by hand. The work of Patrick and Radhia Cousot [12] is clear and we refer
the reader to Patrick Cousot’s book [10] which explains the relationship between these two
ways of checking an algorithm against its contract. We have simply taken up the concepts and
disseminated them over the past few years.

11

5 The Methodology in Action
We have described concepts required for using Event-B as support for expressing verification
conditions that have been given. We justify verification conditions in the full version . This
example does not illustrate the prover’s performance, but rather the simplicity of the translation.
We developed this translation based on a tutorial session during which I tested it without proving
its correctness. We wanted to check the manual verification process, which works by applying
simple rewriting and sequence simplification rules. The method allows you to teach the Event-
B language and to state the need of refinement.

Obtaining the invariant simply involves copying annotations as a conjunction of local anno-
tations: invariants inv1 and inv2 are type invariants, inv3, inv4 and inv5 come from the contract
SIMPLE. x0 is the input value of x and xf is the final value of x at ℓ2.

contract SIMPLE
variables x
requires x0 ∈ N
ensures xf = 0
begin
ℓ0 : {0 ≤ x ≤ x0 ∧ x0 ∈ N}
while 0 < x do

ℓ1 : {0 < x ∧ x ≤ x0 ∧ x0 ∈ N}
x := x − 1;

od
ℓ2 : {x = 0}end

The

writing process is straightforward for stu-
dents. They write an invariant and then the
events corresponding to the observation of the
calculation described by the algorithm. Stu-
dents concentrate mainly on the formal writ-
ing of the annotations and only discover the
result of the proof when the file is saved.

Event Init
THEN

act1 : x := x0
act2 : l := l0

Event el0l1
WHEN

grd1 : l = l0
grd2 : 0 < x

THEN
act1 : l := l1

INVARIANTS
inv1 : x ∈ N
inv2 : l ∈ L
inv3 : l = l0⇒
0 ≤ x ∧ x ≤ x0 ∧ x0 ∈ N
inv4 : l = l1⇒
0 < x ∧ x ≤ x0 ∧ x0 ∈ N
inv5 : l = l2⇒ x = 0
requires : x0 ∈ N ∧ x = x0
⇒x = x0 ∧ x0 ∈ N
ensures : x = 0 ∧ x = x0
⇒x = 0

Event el0l2
WHEN

grd1 : l = l0
grd2 : ¬(0 < x)

THEN
act1 : l := l2

Event el1l0
WHEN

grd1 : l = l1
THEN

act1 : l := l0
act2 : x := x− 1

This example is very simple and consists of one iteration which stops when the value of x
is zero. It does not pose problem with Rodin and the proofs are derived at the same time as the
at the same time as writing the elements of the invariant and the events. Proofs obligations are
discharged by the proof tools while editing the Event-B machine in the Rodin platform.

12

6 Soundness and Completeness of the Methodology
The methodology is based on induction principles for proving invariance properties of programs
and we base our justification on works of P. and R. Cousot [11, 12]. We assume that we have
a contract defined by a requires statement pre(x0), a ensures statement post(x0, xf) and a list
of non-logical variables x. The algorithm is called P and a semantics for P is supposed to be
defined by the transition relation s

⋆−→
P

s′. A state s of P is generally defined as a mapping from

variables to set of possible values D and the expression s(x) is the values stored in the non-
logical variable x and s(x) = x and, when s′ is the next state of s, s′(x) = x′. Hence, we choose
to use logical variables to express our properties. When dealing with program semantics, we
can use an operational semantics using two possible styles namely sos or nat and we define
two transition relations over the set of configurations defined as either state s or control state
(S, s) where S is a statement or a program fragment. More precisely, we define the following
relations (S, s) −−→

nat
s′ or (S, s) −→

sos
s′ or (S, s) −→

sos
(S ′, s′). The validity of the contract is

expressed by the following expression:

∀x0, x ∈ D.pre(x0) ∧ (P, x0) −−→
nat

x⇒ post(x0, x) (1)

Verification conditions are based on the application of induction principles that we are
sketching in the next lines. The partial correctness of a program P with respect to a precon-
dition pre and a postcondition post is a state property called a safety property and the definition
is expressed as follow. We assume that P is the annotated program, x is the list pf variables of P
and pc is the control variable of P. The pair (pc,x) is denoted z and we consider that init(z) de-
fines the initial states of P and more precisely init(z)=̂z = (pc, x)∧pc = l0∧pre(x0)∧x = x0
and z0 = (l0, x0)) is denoting an initial state . An assertion S(z0, z) expresses a relation be-
tween z0 and z and z0 intends to mean the initial value. L is the set of labels used for annotating
the algorithm P.

Definition 1. (Safety property)
A property S(z0, z) is a safety property for an annotated program P, if

∀z0, z ∈ L× D.init(z0) ∧ (z0
⋆−→
P

z)⇒ S(z0, z).

A safety property is a state property true for any reachable states (z) from initial states (z0).

Property 1. (Induction Principle (I))
A property S(z0, z) is a safety for an annotated program P if, and only if, there exists a

property I(z0, z) satisfying:

1. ∀z0, z ∈ L× D.init(z0) ∧ z = z0⇒ I(z0, z)

2. ∀z0, z, z′ ∈ L× D.init(z0) ∧ I(z0, z) ∧ (z −→
P

z′)⇒ I(z0, z′)

3. ∀z0, z ∈ L× D.init(z0) ∧ I(z0, z)⇒ S(z0, z)

The relation z −→
P

z′ expresses a basic transition of P and corresponds to an event denoted

e(ℓ, ℓ′). BA(e(ℓ, ℓ′))(x, x′) is the before-after predicate simulating the transition z −→
P

z′ and it

means that BA(e(ℓ, ℓ′))(x, x′)=̂z −→
P

z′ ∧ z = (ℓ, x) ∧ z′ = (ℓ′, x′). The property I(z0, z) is
called an (inductive) invariant and the problem is to find the invariant. In the annotation-based
approach, the discovery of the invariant is related to the annotation produced by the user.

13

We are considering the following property J(z0, z) defined from the annotated program P:

J(ℓ0, x0, ℓ, x)=̂

pre(x0) ∧ pc ∈ L ∧ x ∈ D
. . .
pc = ℓ⇒ Pℓ(x0, x)
. . .

Now, we have to state events as e(ℓ, ℓ′) and we can consider the cases according to the
annotation and the syntax of P. The annotation of P is assigning a label before any statement S
and a next label depending the enabled transition. We derive the property for defining events.

Property 2. e(ℓ, ℓ′) is defined as follow:

• ℓ : x := e(x); ℓ′ : . . .:
e(ℓ, ℓ′)=̂when pc = ℓ then (pc, x) := (ℓ′, e(x)) end when the program counter pc is equal
to ℓ, then it is updated to ℓ′ and x is set to the values of e

• ℓ : if b(x) then ℓ′ : S1 . . .:
e(ℓ, ℓ′)=̂when pc = ℓ ∧ b(x) then pc := ℓ′ end when the program counter pc is equal to
ℓ with b(x) true, then it is updated to ℓ′ and x is unchanged.

• ℓ : if b(x) then . . . else ℓ′ : . . . end:
e(ℓ, ℓ′)=̂when pc = ℓ ∧ not b(x) then pc := ℓ′ end

• ℓ : while b(x) then ℓ′ : S1 . . .:
e(ℓ, ℓ′)=̂when pc = ℓ ∧ b(x) then pc := ℓ′)

• ℓ : while b(x) then . . . od; ℓ′ : . . .:
e(ℓ, ℓ′)=̂when pc = ℓ ∧ not b(x) then pc := ℓ′)

• ℓ′ : while b(x) then . . . ℓ : x := e(x)od; . . .:
e(ℓ, ℓ′)=̂when pc = ℓ then (pc, x) := (ℓ′, e(x))

The translation is based on the sos semantics for P. We have now an event-based expression
of progam transition and we can state the next property which is showing that event preserve
the invariant J(ℓ0, x0, ℓ, x). The set of events of P is called E(P).

We should now state the safety property by substituting z by (ℓ, x). A property S(z0, z) is
a safety for an annotated program P, if ∀z0, z ∈ L× D.init(z0) ∧ (z0

⋆−→
P

z)⇒ S(z0, z). We

can reformulate as follow. A property S(ℓ0, x0, ℓ, x) is a safety for an annotated program P, if
∀ℓ0, ℓ ∈ L, x0, x ∈ D.pre(x0) ∧ ℓ0 ∈ L0 ∧ (ℓ0, x0)

⋆−→
P

(ℓ, x))⇒ S(ℓ0, x0, ℓ, x). L0 is the set

of initial labels and we are assuming that there is only one element in L0. From now, e(ℓ, ℓ′)
designates the event leading the control from ℓ to ℓ′ and it may be possible that it does not exist
when labels are not consecutive, when considering the property 2. BA(e(ℓ, ℓ′),) is the relation
between before values of pc and x and next values of pc and x.

The induction principle stated in the property 1 is reformulated as follow.

Property 3. (Induction Principle (II))
A property S(ℓ0, x0, ℓ, x) is a safety property for an annotated program P if, and only if,

there exists a property I(ℓ0, x0, ℓ, x) satisfying:

1. ∀ℓ0,∈ L, x0 ∈ D.ℓ0 ∈ L0 ∧ pre(x0) ∧ x = x0 ∧ pc = ℓ0⇒ J(ℓ0, x0, ℓ, x)

2. ∀ℓ, ℓ′ ∈ L, x, x0 ∈ D.ℓ0 ∈ L0 ∧ pre(x0) ∧ J(ℓ0, x0, ℓ, x) ∧ BA(e(ℓ, ℓ′),)(ℓ, x, ℓ′, x′)⇒
J(ℓ0, x0, ℓ′, x′)

14

3. ∀ℓ0, ℓ ∈ L, x0, x ∈ D.pre(x0) ∧ ℓ0 ∈ L0 ∧ J(ℓ0, x0, ℓ, x)⇒ S(ℓ0, x0, ℓ, x)

The induction principle stated by property 3 is adapted from the induction principle in prop-
erty labelprop:ip. The assumption on the set L0 can be translated and made simpler.

Property 4. (Induction Principle (III))
A property S(x0, ℓ, x) is a safety for an annotated program P with one entry point if, and

only if, there exists a property I(x0, ℓ, x) satisfying:

1. ∀x0 ∈ D.pre(x0) ∧ x = x0 ∧ ℓ = ℓ0⇒ J(x0, ℓ, x)

2. ∀ℓ, ℓ′ ∈ L, x, x0 ∈ D.pre(x0) ∧ J(x0, ℓ, x) ∧BA(e(ℓ, ℓ′),)(ℓ, x, ℓ′, x′)⇒ J(x0, ℓ′, x′)

3. ∀ℓ ∈ L, x0, x ∈ D.pre(x0) ∧ J(x0, ℓ, x)⇒ S(x0, ℓ, x)

The statement of the induction principle (III) in the property 4 is expressed using the Event-
B formalism.

Property 5. (INITIALISATION) The two statements are equivalent

• ∀x0 ∈ D.pre(x0) ∧ x = x0 ∧ ℓ = ℓ0 ∧⇒J(x0, ℓ, x)

• pre(x0) ∧ x = x0 ∧⇒Pℓ0(x0, x) (pre)

The statement (pre) should be proved as a theorem in the main machine.

Property 6. (GENERALISATION) The two statements are equivalent

• ∀ℓ ∈ L, x0, x ∈ D.pre(x0) ∧ J(x0, ℓ, x)⇒ S(x0, ℓ, x)

• ∀ℓ ∈ L.pre(x0) ∧ J(x0, ℓ, x)⇒ S(x0, ℓ, x) (gen)

The statement (gen) should be proved as a theorem in the main machine.

The two properties 5 and help in proving any safety property. We use the induction principle
for the following cases:

• Partial correctness (PC): we denote by LF the set of termination points of P; PC(x0, ℓ, x)=̂ℓ ∈
LF ∧ pc = ℓ⇒ post(x0, x).

• RunTime Error (RTE): we define for each pair (ℓ, ℓ′) a condition defined by DEF (ℓ, ℓ′)(x)
when (ℓ, ℓ′) defines an event denoted (ℓ, ℓ′) dom(e); however from a label ℓ, there is one
next label (assignment) or two next labels (condition). We will denote next(ℓ) the set of
next labels for ℓ:
RTE(x0, ℓ, x)=̂

∧
ℓ′∈next(ℓ)

DEF (ℓ, ℓ′)(x).

Now, we can derive a new property for showing how the induction step of our induction
principle in property 4 is handled in the Event-B environment. In fact, the invariant J(x0, ℓ, x)
is written as a conjonction of implications and the invariant J(x0, ℓ, x) is proved to be preserved
by the events of E(P). Thanks to the inductive proof of Event-B proof obligations. It leads us
to the final property.

15

Property 7. (Spundness of the method) If the initialisation init, the generalisation gen and
the step induction are proved to be correct by the Rodin platform, the property S(x0, ℓ, x) is a
correct safety property for the program P. In particular, one can handle the partial correctness
and the run time error safety properties.

Now, we can notice that the transition relation ‘ is defined over set of states and the variable
pc can also model a multiple control point. It means that we can also derive a proof of a safety
property for a concurrent or distributed algorithm by defining the annotation of each process of
the program and by defining related events modelling each transition relation for each process.
We can also mention that it is also possible to use the Atelier-B platform and there is a simple
syntactical translation of Event-B models between the two platforms.

7 Comments and Conclusion
The evolution of teaching in our courses on software engineering and distributed algorithms
is marked by the use of a number of verification tools with master level students. In fourth
year, students learn the basic concepts and techniques they will need to know, including how to
use logic to model program properties, the semantics of programming languages and induction
principles. They are trained in fundamental tools that they will almost certainly need to use,
such as model checking, runtime verification or test management. Additionally, we sought to
collaborate with students on authentic programming challenges, which led to the development
of a language centered around contracts.

Upon their arrival in the fourth year, we realized that there was a lack of connection between
the problem posed by a particular execution, such as calculating the average of two numbers in
C, and the proposal to calculate this average for the two numbers equal to the maximum that can
be coded. The value returned (-1) is still largely misunderstood. Using Frama-C demonstrated
that the RTE plugin facilitated the management of potential errors. The most common issues are
managing tools and, in particular, distributing them across different types of operating systems.
One solution is to create a virtual machine with the necessary software installed, but this can
cause problems on machines that are not powerful enough or too new.

The second stage of our project to integrate formal methods into a university curriculum
is to teach the Event-B modelling language and to use incremental development based on
refinement. We will handle the notion of contract in 4th year so that we can continue to master
the Event-B language and, in particular, to introduce the refinement of formal models. The
MALG course are reviewed with the formal expression of refinement and its use. In particular,
the incremental development of sequential and distributed algorithms is covered with Event-
B and Rodin. The leader election algorithm [4]. was the starting point for this work. It
made it possible to explain this algorithm simply to students. Our students cohorts include
a significant proportion of students who have learned mathematical proof while preparing for
university entrance examinations. These students are well-equipped to play with the tools and
interact effectively. Finally, we would like to emphasise the Knaster-Tarski [10] theorem, which
also allows us to play with inductions and inductive definitions. We have employed the work
of P. and R. Cousot [12] to define an induction principle for proving safety properties in the
case of sequential programs, which can be generalised to concurrent or distributed programs.
This translation demonstrates how verification tools operate and illustrates the link between the
semantics of programming languages and the verification process.

16

References
[1] Jean-Raymond Abrial. The B-book - assigning programs to meanings. Cambridge Uni-

versity Press, 1996.

[2] Jean-Raymond Abrial. Modeling in Event-B: system and software engineering. Cambridge
University Press, 2010.

[3] Jean-Raymond Abrial, Michael J. Butler, Stefan Hallerstede, Thai Son Hoang, Farhad
Mehta, and Laurent Voisin. Rodin: an open toolset for modelling and reasoning in Event-
B. STTT, 12(6):447–466, 2010.

[4] Jean-Raymond Abrial, Dominique Cansell, and Dominique Méry. A mechanically proved
and incremental development of IEEE 1394 tree identify protocol. Formal Aspects Com-
put., 14(3):215–227, 2003.

[5] H.-Ruyz Barradas. Event-B: Syntax and proof oglogations in Atelier-B. Technical report,
ClearSy, 2020.

[6] Patrick Baudin, François Bobot, David Bühler, Loı̈c Correnson, Florent Kirchner, Niko-
lai Kosmatov, André Maroneze, Valentin Perrelle, Virgile Prevosto, Julien Signoles, and
Nicky Williams. The dogged pursuit of bug-free C programs: the frama-c software analy-
sis platform. Commun. ACM, 64(8):56–68, 2021.

[7] Néstor Cataño, K. Rustan M. Leino, and Vı́ctor Rivera. The eventb2dafny rodin plug-in. In
Diego Garbervetsky and Sunghun Kim, editors, Proceedings of the Second International
Workshop on Developing Tools as Plug-Ins, TOPI 2012, Zurich, Switzerland, June 3, 2012,
pages 49–54. IEEE Computer Society, 2012.

[8] Edmund M. Clarke, E. Allen Emerson, and A. Prasad Sistla. Automatic verification of
finite state concurrent systems using temporal logic specifications: A practical approach.
In John R. Wright, Larry Landweber, Alan J. Demers, and Tim Teitelbaum, editors, Con-
ference Record of the Tenth Annual ACM Symposium on Principles of Programming Lan-
guages, Austin, Texas, USA, January 1983, pages 117–126. ACM Press, 1983.

[9] ClearSy. B Language reference manual ver.1.8.10, 2022.

[10] Patrick Cousot. Principles of Abstract Interpretation. The MIT Press, 2021.

[11] Patrick Cousot. Calculational design of [in]correctness transformational program logics
by abstract interpretation. Proc. ACM Program. Lang., 8(POPL):175–208, 2024.

[12] Patrick Cousot and Radhia Cousot. Induction principles for proving invariance properties
of programs. In D. Néel, editor, Tools & Notions for Program Construction: an Advanced
Course, pages 75–119. Cambridge University Press, Cambridge, UK, August 1982.

[13] Robert W. Floyd. Assigning meanings to programs. In Timothy R. Colburn, James H. Fet-
zer, and Terry L. Rankin, editors, Program Verification: Fundamental Issues in Computer
Science, pages 65–81. Springer Netherlands, Dordrecht, 1993.

[14] Richard L. Ford and K. Rustan M. Leino. Dafny Reference Manual, 2017.

[15] C. A. R. Hoare. An axiomatic basis for computer programming. Commun. ACM,
12(10):576–580, 1969.

17

[16] Markus Alexander Kuppe, Leslie Lamport, and Daniel Ricketts. The TLA+ toolbox. In
Rosemary Monahan, Virgile Prevosto, and José Proença, editors, Proceedings Fifth Work-
shop on Formal Integrated Development Environment, F-IDE@FM 2019, Porto, Portugal,
7th October 2019, volume 310 of EPTCS, pages 50–62, 2019.

[17] Verimag Laboratory. The synchrone reactive toolbox. https://www-verimag.imag.fr/DIST-
TOOLS/SYNCHRONE/reactive-toolbox/, 2022.

[18] Leslie Lamport. The temporal logic of actions. ACM Trans. Program. Lang. Syst.,
16(3):872–923, 1994.

[19] Issam Maamria and Asieh Salehi Fathabadi. Theory Plug-in User Manual. University of
Southampton.

[20] Zohar Manna. Mathematical Theory of Computation. Dover Publications, Inc., US, 2003.

[21] Dominique Méry and Abdelillah Mokkedem. Crocos: An integrated environment for
interactive verification of SDL specifications. In Gregor von Bochmann and David K.
Probst, editors, Computer Aided Verification, Fourth International Workshop, CAV ’92,
Montreal, Canada, June 29 - July 1, 1992, Proceedings, volume 663 of Lecture Notes in
Computer Science, pages 343–356. Springer, 1992.

[22] Bertrand Meyer. Design by contract. In D. Mandrioli and B. Meyer, editors, Advances in
Object-Oriented Software Engineering, pages 1–50, 1991.

[23] Why3 Team. Why3. https://why3.lri.fr.

[24] Iowa University. Kind2 multi-engine smt-based automatic model checker for synchronous
reactive systems. https://kind2-mc.github.io/kind2/, 2024.

A Archives of the Rodin projects for checking contracts

A.1 Example 1

CONTEXT context
SETS

CONSANTS
x0, l0, l1, l2, l3,
AXIOMS
pre1(x0, y0) : x0 ∈ N
axm2 : partition(L, {l0}, {l1}, {l2}, {l3})

18

MACHINE algorithm SEES context
VARIABLES

x l
INVARIANTS
inv1 : x ∈ N
inv2 : l ∈ L
inv3 : l = l0⇒ 0 ≤ x ∧ x ≤ x0 ∧ x0 ∈ N
inv4 : l = l1⇒ 0 < x ∧ x ≤ x0 ∧ x0 ∈ N
inv5 : l = l2⇒ x = 0
pre : x = x0 ∧ x0 ∈ N⇒ 0 ≤ x ∧ x ≤ x0 ∧ x0 ∈ N
post : x0 ∈ N ∧ x = 0⇒ x = 0

THEN
act1 : x := x0
act2 : l := l0

Event el0l1
WHEN
grd1 : l = l0
grd2 : 0 < x

THEN
act1 : l := l1

Event el0l2
WHEN
grd1 : l = l0
grd2 : ¬(0 < x)

THEN
act1 : l := l2

Event el1l0
WHEN
grd1 : l = l1

THEN
act1 : l := l0
act2 : x := x− 1

end

19

A.2 Example 2

CONTEXT context0
SETS
CONSANTS

x0, y0, z0, l0, l1, l2, l3, l4, l5, l6, l7, l8, l9,AXIOMS
axm1 : x0 ∈ N
axm2 : y0 ∈ N
axm5 : z0 ∈ Z
axm3 : partition(C, {l0}, {l1}, {l2}, {l3}, {l4}, {l5}, {l6}, {l7}, {l8}, {l9})
axm7 : x0 = 12
axm6 : y0 = 34

end

20

MACHINE algorithm SEES context0
VARIABLES

pc x y z
INVARIANTS
inv1 : pc ∈ C
inv2 : x ∈ N
inv3 : y ∈ N
inv4 :

z ∈ Z
inv5 : x = x0 ∧ y = y0
inv6 : pc = l0⇒ x = x0 ∧ y = y0 ∧ z = z0 ∧ x0 ∈ N ∧ y0 ∈ N ∧ z0 ∈ Z
inv7 : pc = l1⇒ x = x0 ∧ y = y0 ∧ z = z0 ∧ x < y
inv9 : pc = l2⇒ x = x0 ∧ y = y0 ∧ z = z0 ∧ x ≥ y
inv11 : pc = l3⇒ x = x0 ∧ y = y0 ∧ z ∈ {x0, y0} ∧ x ≤ z ∧ y ≤ z
pre : x0 ∈ N ∧ y0 ∈ N ∧ z0 ∈ Z ∧ x = x0 ∧ y = y0 ∧ z = z0⇒ x = x0 ∧ y = y0 ∧ z = z0 ∧ x0 ∈ N ∧ y0 ∈ N ∧ z0 ∈ Z
post : pc = l3 ∧ x = x0 ∧ y = y0 ∧ z ∈ {x0, y0} ∧ x ≤ z ∧ y ≤ z ⇒ z ∈ {x0, y0} ∧ x0 ≤ z ∧ y0 ≤ z

THEN
act5 : pc := l0
act6 : x := x0
act7 : y := y0
act8 : z := z0

Event al0l1
WHEN
grd1 : pc = l0
grd2 : x < y

THEN
act4 : pc := l1

Event al0l2
WHEN
grd1 : pc = l0
grd2 : x ≥ y

THEN
act1 : pc := l2

Event al1l3
WHEN
grd1 : pc = l2

THEN
act1 : pc := l3
act2 : z := y

Event al2l3
WHEN
grd1 : pc = l2

THEN
act1 : pc := l3
act2 : z := x

end

21

A.3 Example 3

CONTEXT context0
SETS
CONSANTS

f, n, l0, l1, l2, l3, l4, l5, l6, l7, l8, l9,AXIOMS
axm1 : n ∈ N1

axm2 : f ∈ 0 .. n− 1→ N
axm3 : partition(C, {l0}, {l1}, {l2}, {l3}, {l4}, {l5}, {l6}, {l7}, {l8}, {l9})
axm4 : ∀P ·P ⊆ N ∧ finite(P)⇒ (∃am·am ∈ P ∧ (∀k ·k ∈ P ⇒ k ≤ am))

end

MACHINE algorithm SEES context0
VARIABLES

l m i
INVARIANTS
inv1 : l ∈ C
inv2 : m ∈ N
inv3 : i ∈ N
inv4 : i ∈ 0 .. n
inv5 : l = l0⇒m ∈ N ∧ i ∈ N
inv6 : l = l1⇒m = f(0)
inv7 : l = l2⇒ i ≤ n ∧ 0 .. i− 1 ⊆ dom(f) ∧ (∀j ·j ∈ 0 .. i− 1⇒ f(j) ≤ m) ∧m ∈ ran(f)
inv8 : l = l3⇒ i < n ∧ 0 .. i ⊆ dom(f) ∧ (∀j ·j ∈ 0 .. i− 1⇒ f(j) ≤ m) ∧m ∈ ran(f)
inv9 : l = l4
⇒i < n ∧ 0 .. i ⊆ dom(f) ∧ (∀j ·j ∈ 0 .. i− 1⇒ f(j) ≤ m) ∧ f(i) > m ∧m ∈ ran(f)

inv11 : l = l6⇒ i < n ∧ 0 .. i ⊆ dom(f) ∧ (∀j ·j ∈ 0 .. i⇒ f(j) ≤ m) ∧m ∈ ran(f)
inv13 : l = l8
⇒i = n ∧ dom(f) ⊆ 0 .. i− 1 ∧ (∀j ·j ∈ 0 .. i− 1⇒ f(j) ≤ m) ∧m ∈ ran(f)

post : l = l8
⇒(∀j ·j ∈ 0 .. n− 1⇒ f(j) ≤ m) ∧m ∈ ran(f)

pre : f ∈ 0 .. n− 1→ N ∧ i ∈ 0 .. n ∧m ∈ N⇒m ∈ N ∧ i ∈ N

22

THEN
act5 : l := l0
act6 : m :∈ N
act7 : i :∈ 0 .. n

Event al0l1
WHEN
grd1 : l = l0

THEN
act4 : l := l1
act5 : m :| (m′ = f(0))

Event al1l2
WHEN
grd1 : l = l1

THEN
act1 : l := l2
act2 : i := 1

Event al2l3
WHEN
grd1 : l = l2
grd2 : i < n

THEN
act1 : l := l3

Event al2l8
WHEN
grd1 : l = l2
grd2 : i ≥ n

THEN
act1 : l := l8

Event am3l4
WHEN
grd1 : l = l3
grd2 : f(i) > m

THEN
act1 : l := l4

Event el3l6
WHEN
grd1 : l = l3
grd2 : f(i) ≤ m

THEN
act1 : l := l6

Event al4l6
WHEN
grd1 : l = l4

THEN
act1 : l := l6
act2 : m := f(i)

Event al6l2
WHEN
grd1 : l = l6

THEN
act1 : l := l2
act2 : i := i+ 1

Event el3l8
WHEN
grd1 : l = l3
grd2 : i ≥ n

THEN
act1 : l := l8

B Sequence of C programs

B.1 Sequence 1

Listing 3: Function average
i n c l u d e <s t d i o . h>
i n c l u d e < l i m i t s . h>

23

i n t a v e r a g e (i n t a , i n t b)
{

re turn ((a+b) / 2) ;
}

i n t main ()
{

i n t x , y ;
x=INT MAX ; y=INT MAX ;
p r i n t f (” Average f o r %d

and %d i s %d\n ” , x , y ,
a v e r a g e (x , y)) ;

re turn 0 ;
}

Listing 4: Function average
i n c l u d e <s t d i o . h>
i n c l u d e < l i m i t s . h>
/ *@ r e q u i r e s 0 <= a ;

r e q u i r e s a <= INT MAX ;
r e q u i r e s 0 <= b ;
r e q u i r e s b <= INT MAX ;
r e q u i r e s 0 <= a+b ;
r e q u i r e s a+b <= INT MAX ;
e n s u r e s \ r e s u l t <= INT MAX ;

* /
i n t a v e r a g e (i n t a , i n t b)
{

re turn ((a+b) / 2) ;
}

i n t main ()
{

i n t x , y ;
x=INT MAX / 2 ; y=INT MAX / 2 ;
/ / p r i n t f (” Average f o r %d and %d i s %d\n ” , x , y ,
/ /) ;
re turn a v e r a g e (x , y) ;

}

Listing 5: Function average
i n c l u d e <s t d i o . h>
i n c l u d e < l i m i t s . h>
/ *@ r e q u i r e s 0 <= a ;

r e q u i r e s a <= INT MAX ;
r e q u i r e s 0 <= b ;
r e q u i r e s b <= INT MAX ;
r e q u i r e s 0 <= a+b ;
r e q u i r e s a+b <= INT MAX ;
e n s u r e s \ r e s u l t <= INT MAX ;

24

* /
i n t a v e r a g e (i n t a , i n t b)
{

re turn ((a+b) / 2) ;
}

i n t main ()
{

i n t x , y , r ;
x =56; y =46;
r = a v e r a g e (x , y) ;
p r i n t f (” Average f o r %d and %d i s %d\n ” , x , y , r) ;
re turn 0 ;

}

B.2 Sequence 2

Listing 6: Non testable Function

i n c l u d e <s t d i o . h>
i n c l u d e < s t d l i b . h>
i n c l u d e <t ime . h>

i n t main () {
i n t x , y ;
/ / Seed t h e random number
/ / g e n e r a t o r
/ / w i t h t h e c u r r e n t t i m e
s r a n d (t ime (NULL)) ;
/ / Genera te a random number
/ / be tween 1 and 100
x = rand () % 100 + 1 ;
/ / Per form some c a l c u l a t i o n s
y = x / (100 − x) ;
p r i n t f (” R e s u l t : %d\n ” , y) ;
re turn 0 ;

}

Listing 7: Non testable Function
/ / Heisenbug
i n c l u d e <s t d i o . h>
i n c l u d e < s t d l i b . h>
i n c l u d e <t ime . h>

i n t main () {
i n t x , y , i =0 ;

25

f o r (i = 0 ; i <= 100000; i ++) {
/ / Seed t h e random number g e n e r a t o r w i t h t h e c u r r e n t t i m e
s r a n d (t ime (NULL)) ;

/ / Genera te a random number be tween 1 and 100
x = rand () % 100 + 1 ;

p r i n t f (” R e s u l t : x= %d\n ” , x) ;
/ / Per form some c a l c u l a t i o n s
y = x / (100 − x) ;

p r i n t f (” R e s u l t : i=%d %d\n ” , i , y) ;
}

re turn 0 ;
}

Listing 8: Non testable Function
/ / Heisenbug
i n c l u d e <s t d i o . h>
i n c l u d e < s t d l i b . h>
i n c l u d e <t ime . h>

i n t main () {
i n t x , y , i =0 ;

f o r (i = 0 ; i <= 100 ; i ++) {
/ / Seed t h e random number g e n e r a t o r w i t h t h e c u r r e n t t i m e
s r a n d (t ime (NULL)+ i) ;

/ / Genera te a random number be tween 1 and 100
x = rand () % 100 + 1 ;

p r i n t f (” R e s u l t : x= %d\n ” , x) ;
/ / Per form some c a l c u l a t i o n s
y = x / (100 − x) ;

p r i n t f (” R e s u l t : i=%d %d\n ” , i , y) ;
}

re turn 0 ;
}

26

