
Modelling Software-based Systems:
Correct by Construction Paradigm

Chapter Design of Correct by Construction Sequential Algorithms
Draft version

Dominique MÉRY
10:27pm

March 18, 2025





Contents





1

Design of Correct by Construction
Sequential Algorithms

Dominique MÉRY1
1 LORIA, Telecom Nancy & Université de Lorraine

1.1. Introduction

The development of correct sequential algorithms or sequential programs from specifications (?) is a scientific
theme linked to that of the verification of programs or algorithms(???). The fundamental question can be sum-
marised in the form of a symbolic relation D,A ⇒ C where D (resp. A, C) is the problem domain (resp. the
algorithm, the contract). In this relation, we assume that the problem domain D is known and may be, for example,
Z the domain of integers, and we will be interested in problems requiring properties on integers. A problem is a
general expression to designate the calculation of a value from data or the search for a value in a set of data. The A
algorithm is an algorithmic expression for expressing assignment statements, conditional statements and bounded
or unbounded iterations. Finally, C is a contract expression in the form of two elements a pre-condition pre(v0)
and a post-condition post(v0, vf ) relating the initial value v0 of a flexible variable v to its final value vf . Solving
the problem consists in expressing it in the form of a contract and ensuring that for any initial value v0 satisfying
pre(v0), there exists a value vf satisfying post(v0, vf ). On the other hand, it is important that the final value of vf
corresponds to a calculation of an algorithm A in the classical sense of computability (?). The relation can therefore
be rewritten in the following form:∀v0, vf ∈ D.pre(v0) ∧ v0

A−→ vf ⇒ post(v0, vf ) and we obtain the expression
for the partial correctness of the A algorithm in relation to the contract C(v,pre(v0),post(v0, vf )) on the domain

D. The relation A−→ expresses the calculation of A and we can add a second expression which plays the role of the
termination of A: ∀v0 ∈ D.pre(v0)⇒∃vf ∈ D.v0

A−→ vf . The relation A−→ has the right property of determinism
in our case of classical sequential algorithms. The two translations produce a synthetic expression of the following
form:

∀v0 ∈ D.pre(v0)⇒

(
∀vf ∈ D.v0

A−→ vf ⇒ post(v0, vf )
∃vf ∈ D.v0

A−→ vf

)

which we rewrite with the weakest-precondition (wp) calculus as follows: ∀v0 ∈ D.v = v0 ∧ pre(v0) ⇒
wp(A)(post(v0, v))

which we rewrite with Hoare triples as follows: {v = v0 ∧ pre(v0)}A{post(v0, v)}. Note that the operator wp
expresses the total correctness of the statement and leads to the Hoaree logic for total correctness.

This discussion led us to give meaning to the correctness of an algorithm by considering its partial correctness as
well as its termination. Hoare logic most often expresses partial correctness and in all rigour it would be necessary
to use two notations, one expressing partial correctness and the other total correctness, but the objective here is
not to verify an algorithm A and therefore to verify a list of verification conditions as Floyd method indicates, but
to find an algorithm A which satisfies this expression ∀v0 ∈ D.v = v0 ∧ pre(v0)⇒ wp(A)(post(v0, v)). The

,
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Figure 1.1. Correctness by construction in Event-B

problem is therefore to construct an algorithm A enabling the contract C to be fulfilled in the domain D. In the
a posteriori approach to correcting algorithms, we propose a solution for A and then apply the list of verification
conditions. This technique also consists of applying the verification conditions without having clearly stated the
contract C. Semantic analysis techniques can thus be developed with the abstract interpretation (?) and this is
based on semantic techniques that simplify the life of the programmer who obtains analysis feedback. Correctness
by construction is a technique which starts with an abstract algorithm A0 which fulfils the contract in a verified
way and which is progressively enriched with increasingly complex control structures while observing the property
of correctness with respect to the contract C. This progressive strategy of adding elements to make the result more
precise is guided by the refinement relationship between the algorithms. Each transformation or refinement step
guarantees that the resulting algorithm is correct. C. Morgan (?) develops the refinement calculus which makes
it possible to progressively and correctly transform one algorithm into another algorithm by guaranteeing that
the final algorithm is correct with respect to the first algorithm which is a pre/post specification considered as an
algorithmic action of the form v : |(pre, post). v : |(pre, post) designates an algorithmic statement I whose effect
is to modify v by respecting the contract defined by pre and post. Thus, the strategy consists of constructing a
sequence of algorithms A0,. . . , Ai, . . . , An with the properties:

– A0 is the expression of the contract: D,A0 ⇒ A0

– for all i in 0..n− 1, the algorithm Ai refines Ai− 1: D,Ai ⇒ C and D,Ai− 1 ⇒ C.
– An is the algorithm satisfying the contract: D,An ⇒ C.

More recently, Derrick G. Kourie and Bruce W. Watson (?) follow this strategy and implement the correction-
by-construction paradigm on classical examples of classical programming problems. This approach is equipped
with Key to enable the rules applied to be validated using a tool. the rules applied. We can identify in these
two calculations of the fact that the contract becomes an algorithmic statement corresponding to a generalised
algorithmic structure. In fact, as we can see, a contract can express the halting of Turing machines (?) in a
language of assertions which is still fairly abstract, but this does not mean that we have solved the halting problem,
but that we have extended the algorithmic language with a statement magic enabling it to be solved. This amounts
to extending the space of solutions and then choosing what corresponds to the theory of computability. C. Morgan
reminded us that all second degree equations have solutions in fields of complexes, but that the method of solving
in the set of reals retains only the real solutions. The specification statement v : [pre, post] is a valid statement in
this algorithmic language. Such a specification statement can be expressed in the Event-B language.

This approach to developing correct by construction algorithms is quite simply implemented in the Event-B
language and in fact equipped by the Rodin environment. Figure ?? describes the general idea. This idea consists of
translating the contract as a event which observes the calculation described by the contract. The contract expresses
the what but carries out the calculation as an event observation. This event is placed in a first abstract machine AM0,
which uses the mathematical elements extracted from the problem domain D and expressed in the context Event-
B C(D). The development of an algorithm consists in the gradual enrichment of the extracted machines AM0,
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. . . AMn, by expressing the computations necessary to systematically translate the last machine into an algorithmic
form so as to guarantee the correctness of the A algorithm thanks to the correctness of the transformations provided
by the refinement. It should be noted that the correctness concerns partial correctness and termination, and that the
abstract machines are models containing variables that will not be implemented in the algorithm produced.

We will present two techniques that implement this development pattern:
– the inductive pattern based on transformations of abstract machines by Jean-Raymond Abrial (?, Chapter 15).
– the recursive pattern based on the relation call,textitevent that we have developed (??).

We will present these two methods by highlighting case studies of classical sequential algorithms.

1.2. Design of a Iterative Sequential Algorithm

1.2.1. Problem 1 : Calculating the sum of a vector v of integer values

First, we define the contract of calculating the sum of the elements of the vector v0. The algorithm we are
looking for is called SUM.

variables n, v, r

definitions

pre(n0, v0, r0)
def
=

n0 ∈ N ∧ n0 ̸= 0
v0 ∈ 1..n0→ Z
r0 ∈ Z ∧ i0 ∈ Z

requires
(
n0 ∈ N ∧ n0 ̸= 0
v0 ∈ 1..n0→ Z

ensures

 rf =
k=n0∑
k=1

v0(k)

nf = n0

vf = v0

The domain of the problem to be solved is that of the in-
tegers Z and the contract states that the value of the result
is the sum of the integers in the sequence v. This mathe-
matical expression is not directly expressible in the math-
ematical language of Event-B and we define a sequence
u characterising the values of the partial sums. The con-
text associated with our C(Z) Event-B model is defined
by enumerating the requires hypotheses and defining u.
First, we need to express the summation r of the sequence
v0 in the language of Event-B ; this formulation is im-

mediate in mathematical terms: r =
k=n0∑
k=1

v0(k). As the

notation for summing a finite sequence of values is not
provided in the basic elements of the language, we must
define this notion in a context c0 which will contain the
data of the problem and the notations defined specifically
for this case.

Thus, the data n0 and v0 are defined as being respectively a non-zero natural integer (axioms pre1,pre2) and a
function v0 of domain 1..n0 and codomain Z (axiom pre3). THe prefix pre intends to mean that the axioms are
requirements. The aim is to define the theory in which we will describe our data.

Secondly, we introduce a sequence u of integer values corresponding to the partial sums
k=i∑
k=1

v0(k). To do this,

the idea is to define the partial summations using an inductive definition inductive definition, which technically
requires us to be sure of the well definedness of this sequence u. The sequence u is therefore defined as follows:

– u is a total function of 0..n0 in Z (axiom axm1).
– Initially, the summation starts with 0 and u(0) = 0 (axiom axm2).
– For values of i less than n0, the value of u(i) is defined from that of u(i− 1) and v0(i) (axiom axm3).

Axioms are given in the context of c0 and constitute a theory which will be useful for proving the properties of
the models we will develop later.
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CONTEXT S0
CONSTANTS n0 v0 u
AXIOMS
@pre1 n0 ∈ N
@pre2 n0 ̸= 0
@pre5 v0 ∈ 1..n0→ Z
@axm1 u ∈ 0..n0 → Z
@axm2 u(0) = 0
@axm3 ∀ k. k ∈ 1..n0 ⇒ u(k) = u(k − 1) + v0(k)

Each axiom is validated by a set of proof obligations (WD) to ensure the well-definedness of axioms. In We
have therefore defined the mathematical framework of the problem and we will now define the problem of summing
the sequence v0.

1.2.1.1. Specification of the problem to solve

MACHINE S1 SEES S0

VARIABLES r v n

INVARIANTS
@inv1 r ∈ Z
@inv2 n ∈ Z
@inv3 v ∈ 1..n → Z
@read− values n = n0 ∧ v = v0

EVENTS
EVENT INITIALISATION

then
@act1 r : ∈ Z
@act2 n := n0
@act3 v := v0

end

EVENT final
then

@act1 r := u(n)
end

anticipated EVENT keep
then

@act1 r, n, v :|
( r′ ∈ Z ∧ n′ ∈ Z
∧ v′ ∈ 1..n′ → Z
∧ n′ = n0 ∧ v′ = v0 ∧ )

end
end

The problem is therefore to calculate the value
of the sum of the elements of the sequence
v. We define a S1 machine which is an ab-
stract machine expressing through the final
event the postcondition r = u(n). In fact, the
new value of the variable r will be u(n), when
the event Event final has been observed. The
initial value of r is arbitrary at initialisation.
Finally, the variable r must satisfy the very
simple invariant inv1 : r ∈ Z; this informa-
tion constitutes a typing of the variable r. The
event Event final is therefore simply an as-
signment of the value u(n) to r.
We can express it as a HOARE triple:

n = n0

∧v = v0
∧n0 > 0
∧v0 ∈ 1 .. n0→ N

SUM

 r = u(n0)n0 > 0

.

Note that the data is visible from the context
S0. The problem is therefore to find an algo-
rithm that calculates the value u(n) and stores
it in r.
A second event called keep can be also added
to simulate some hidden activity before the
observation of the event final. Note that the
event is anticipated.
We have therefore described the problem do-
main to be solved and we have formulated
what we want to calculate. The next step is
to inventing a method of calculation and this
requires a idea of solution and the use of re-
finement.

1.2.1.2. Refining to compute inductively

We have defined the specification of the problem for calculating the sum of the elements of a sequence v0 and
we now need to find a way to calculate the value of the sequence u at term n0. The assignment r := u(n0) is an
expression mixing a variable r and a mathematical value u(n0). A trivial and inefficient solution is well known:
store the values of the sequence u in an array uu and translate the assignment into the form r := uu(n) where uu
verifies the following property ∀k.k ∈ dom(uu)⇒ uu(k) = u(k) and this property constitutes an element of the
invariant inv4. The idea is therefore to use the variable uu (uu ∈ 0 .. n0 7→ Z) to control the calculation and its
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progress. Progression is ensured by the event step, which decreases the quantity n − i and therefore ensures that
the process converges.

MACHINE S2
REFINES S1
SEES S0

VARIABLES r i uu n v

INVARIANTS
@inv1 i ∈ 0..n
@inv2 uu ∈ 0..n 7→ Z
@inv3 dom(uu) = 0..i
@inv4 ∀ k. k ∈ dom(uu)
⇒ uu(k) = u(k)

theorem @inoutdata1 v = v0
theorem @inputdata2 n = n0

VARIANT n− i

EVENT INIT
then

@act1 r : ∈ Z
@act3 i := 0
@act4 uu := { 0 7→ 0}
@act5 n := n0
@act6 v := v0

end

EVENT final
REFINES final

where
@grd1 n ∈ dom(uu)

then
@act1 r := uu(n)

end

convergent EVENT step
REFINES keep

where
@grd1 n /∈ dom(uu)

then
@act1 i := i+ 1
@act2 uu(i+ 1) := uu(i) + v(i+ 1)

end

END

The S2 machine therefore describes a process which progressively fills the uu table and therefore retains all
the intermediate results. The proof obligations are fairly easy to prove insofar as we have prepared the work of the
proof assistant. We will give the details of the statistics in a table at the end of the development. It is quite clear
that the variable uu is in fact a witness or a trace of the intermediate values and that this variable can therefore be
hidden in this model which will have to be refined. Before hiding this variable, we will set aside the value that we
need to keep uu(i).

1.2.1.3. Focus on the value to be preserved

The following refinement S3 will lead to the introduction of a new variable cu which will retain the last current
value uu(i). We therefore operate a superposition (?) on the S2 machine. The idea is therefore that this model
refines or simulates the model S2 and this also means that the properties of the refined machines remain verified
by the new machine S3 insofar as the proof obligations are all verified.

MACHINE S3 REFINES S2 SEES S0

VARIABLES r i uu cu n v

INVARIANTS
@inv1 cu ∈ Z
@inv2 cu = uu(i)

EVENTS
EVENT INITIALISATION

then
@act1 r : ∈ Z
@act2 i := 0
@act3 uu := { 0 7→ 0}
@act4 cu := 0
@act6 n := n0
@act7 v := v0

end

EVENT final REFINES final
where

@grd1 i = n
then

@act1 r := cu
end

EVENT step REFINES step
where

@grd1 i < n
then

@act1 i := i+ 1
@act2 uu(i+ 1) := uu(i) + v(i+ 1)
@act3 cu := cu+ v(i+ 1)

end

This machine is very expressive and provides a lot of informations to ensure that the machine is suitable for
the problem expressed in the S2 machine, which is refined by this S3 machine. A important issue is that the new
guards are closer to an implementation: n ∈ dom(uu) (resp. n /∈ dom(uu)) is substituted by i = n (resp. i < n).
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It is even clearer that this S3 machine is expensive in terms of variables and the refinement allows us to keep only
the variables that are useful for the calculation. In what follows, we will make the model more algorithmic and
retain only those variables in the concrete model that are sufficient for the calculation.

1.2.1.4. Obtaining an algorithmic machine

In this final step, we refine the S3 machine into a S4 machine and hide the uu variable from the abstract S3
machine. Thus, the S4 machine includes the variables r, n, v, cu and i and we will also note that it satisfies safety
properties called theorems in the S4 machine. These properties are proved from the properties of previous refined
machines. We have thus obtained a machine comprising an initialisation and two events:

– The event final is observed when the value of i is n and, in this case, the variable cu contains the value u(n).
The invariant guarantees that the value of cu is u(n).

– The event step000 is observed, when the value of i is less than n. This also means that, as long as this value
is less than n, the event can be observed and the traces generated from these events therefore correspond to an
iteration algorithmic structure.

MACHINE S4 REFINES S3 SEES S0

VARIABLES r i cu n v

INVARIANTS
theorem @inv1 cu = u(i)
theorem @inv2 i ≤ n

EVENTS
EVENT INITIALISATION

then
@act1 r : ∈ Z
@act2 i := 0
@act4 cu := 0
@act5 v := v0
@act6 n := n0

end

EVENT final REFINES final
where

@grd1 i = n
then

@act1 r := cu
end

EVENT step000 REFINES step
where

@grd1 i < n
then

@act1 i := i+ 1
@act3 cu := cu+ v(i+ 1)

end

The Rodin project archive abk-summation corresponds to this development by refinement, taking care to use
the calculation method defined by the u sequence. The following diagram describes a view of the events observed
as a function of the value of i.

I(r,n,v,cu,i) i = n ∧ r = u(n)
final

init step r :∈ Z ∥ i := 0 ∥ cu := 0 ∥ v := v0 ∥ n := n0
while i < n do
i := i+ 1 ∥ cu := cu+ v(i+ 1)
od;
r := cu;

The components of the project abk-summation are constructed using the u sequence as a guide, taking care
to obtain conditions that can be expressed in an algorithmic language. In our case, the condition n /∈ dom(uu)
(resp. n ∈ dom(uu)) is refined by the condition i < n (resp.i = n). Note that the diagram on the left corresponds
to the algorithm on the right. These transformations can be defined more clearly and are implemented in the
EB2ALGO (?) plugin which produces the above algorithm from the project abk-summation. Jean-Raymond
Abrial (?, Chapter 15) suggests progressive transformation rules to be applied on events like S4 and we give a
more complete treatment of these transformation rules implemented by EB2ALGO (?).
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variables n, v, r

definitions

pre(n0, v0, r0)
def
=

n0 ∈ N ∧ n0 ̸= 0
v0 ∈ 1..n0→ Z
r0 ∈ Z ∧ i0 ∈ Z

requires
(
n0 ∈ N ∧ n0 ̸= 0
v0 ∈ 1..n0→ Z

ensures

 rf =
k=n0∑
k=1

v0(k)

nf = n0

vf = v0

int SUM(int n0, v0, r0, i0)
variables
int r, i = 0, cu = 0, v = v0, n = n0;

while i < n do
cu := cu+ v(i+ 1);
i := i+ 1;

od;
r := cu;
return(r);

1.2.1.5. Comments on the methodology

A specific methodology was employed in the selection of the variables. The uu variable is used for the storage
of the values calculated from the u sequence, with the convention being to link the u sequence and the uu variable
obtained by doubling the name of u. Obviously, we don’t want to store all the intermediate values, just the ones
used in the induction step. So the variable cu acts as a cursor to the value of uu that is useful in the induction
step. uu is a model variable that is no longer necessary to retain for the algorithm. However, it has made the proof
work easier, so it should be retained. Hiding uu provides a truly algorithmic view. It is also possible to obtain the
termination of this algorithm with minimal effort, thanks to the variant which indicates that the event step leads
to the decreasing and convergence of this algorithm. The name final is only imposed by the plugin EB2ALGO (?)
and the use of Jean-Raymond Abrial (?, Chapter 15). Note that abstract machines implicitly contain the event skip
and that each new event refines the previous level event skip. Another strategy would have been to introduce into
the machine S1 an event keep which simulates the loop by anticipation. The archive abk-summation gives a
version using this artifice and illustrates the use of an event anticipated.

1.2.2. Transformations of machines Event-B into sequential algorithms

We take the conclusions of this simple problem and add the extra elements the reader need to develop iter-
ative sequential algorithms. The plugin EB2ALGO implements the transformations of Jean-Raymond Abrial (?,
Chapitre 15). We apply two transformations to the abstract machines obtained at the end of the refinement pro-
cess, which we called ALGO and it simplifies the calculation process by hiding model variables. We recall the
algorithmic language used by Jean-Raymond Abrial (?, Chapter 15)).

Definition 1 (The Pidgin Programming Language (?, Chapitre 15))

Statements of the language are:
– variable_list := expression_list
– statement; statement

– if condition then statement else statement end
– if condition then statement elseif . . . else statement end
– while condition do statement end

A program can be broken down into a set of events, which are then triggered according to the values of the
variables. This decomposition leads to the use of a composition of events. The idea is straightforward, but it must
adhere to strict conventions to use the EB2ALGO (?) plugin. We give these conditions which are implemented by
the plugin and which must be respected, when designing the development.
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Let us consider two events, which we will merge into an algorithmic expression:

EVENT e
WHEN
P
Q

THEN
S

END

EVENT f
WHEN
P
¬Q

THEN
T

END

⇝

EVENTmerge(e, f)
WHEN
P

THEN
WHILE Q DO
S

OD;
T ;

END

We must specify the conditions of application. The event e appears as new or non-anticipated, therefore con-
vergent at a lower level of refinement than that of f. We can be sure that there is a variant which terminates the
loop. We must also assume that P is invariant to the event e. The event merge(e,f) appears at the same level as the
event f. It is possible that P is not present.

WHEN
P
Q

THEN
S

END

WHEN
P
¬Q

THEN
T

END

⇝

event merge(e, f)
WHEN
P

THEN
IF Q THEN
S

ELSE;
T ;

FI;
END

This transformation should be applied, when the two events have been introduced at the same time. The event
merge(e,f) must appear at the same level as the component. The guard P may not be present.

These two transformations can be used to design a plugin that produces a program in the language mentioned.
The initial event is always called final and corresponds to the specification. Then the refinement process guides the
design phase and it is also important to express that the new events that are introduced must decrease by a variant
that ensures the convergence of the process described by the events.

Let us take the example we’ve already dealt with and apply the transformations.

MACHINE S4 REFINES S3 SEES S0

VARIABLES r i cu n v

INVARIANTS
theorem @inv1 cu = u(i)
theorem @inv2 i ≤ n

EVENTS
EVENT INITIALISATION

then
@act1 r : ∈ Z
@act2 i := 0
@act4 cu := 0
@act5 v := v0
@act6 n := n0

end

EVENT final REFINES final
where

@grd1 i = n
then

@act1 r := cu
end

EVENT step000 REFINES step
where

@grd1 i < n
then

@act1 i := i+ 1
@act3 cu := cu+ v(i+ 1)

end
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Event final REFINES final
WHEN
grd1 : i = n

THEN
act1 : r := cu

END

Event step000 REFINES step
WHEN
grd1 : i < n

THEN
act1 : i := i+ 1
act2 : cu := cu+ v(i+ 1)

END
END

Event fusion(step4,final)
WHILE i < n DO
: (i, cu) := (i+ 1, cu+ v(i+ 1))

END;
r := cu

Event INITIALISATION
BEGIN
act1 : r :∈ Z
act2 : n := n0

act3 : v := v0
act4 : cu := 0
act5 : i := 0

END

summation program
begin
(r, n, v, cu, i) := (?, n0, v0, 0, 0)
WHILE i < n DO

(i, cu) := (i+ 1, cu+ v(i+ 1))
END;
r := cu

end

fusion fusion

initialisation
initialisation

We have given an example of how to apply the merge transformation for iteration and we refer the user to the
plugin that implements these transformations.

1.3. Examples of development

In this section, we illustrate the method using a few classic examples. Other examples have been produced by
the Event-B community in particular EB2ALGO (?) et Jean-Raymond Abrial (?, Chapter 15)).

1.3.1. Problem 2: Computing the function power 3 λx.x3 using only additions

The objective is to calculate the function power 3 (λx.x3) of a positive or zero integer using only addition
operations. The method is to define a sequence z corresponding to the cubes of positive integers. The analysis that
leads to the sequences defining z is not provided here, but the sequence is correct.
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variables x, r

definitions

pre(x0, r0)
def
=

{
x0 ∈ N
r0 ∈ Z

requires
(
n0 ∈ N
r0 ∈ Z

ensures
(
rf = x0 ∗ x0 ∗ x0

xf = x0

Calculating the function power 3 (λx.x3) using only ad-
dition is based on the following sequences:

– z0 = 0 et ∀n ∈ N : zn+1 = zn + vn + wn

– v0 = 0 et ∀n ∈ N : vn+1 = vn + tn

– t0 = 3 et ∀n ∈ N : tn+1 = tn + 6

– w0 = 1 et ∀n ∈ N : wn+1 = wn + 3

– u0 = 0 et ∀n ∈ N : un+1 = un + 1

The first step is to show that the sequence z defines the se-
quence of cubes of different integers and therefore gives
an inductive way of calculating the cube of a positive in-
teger x0 using only addition alone. The domain of the
problem to be solved is that of the integers Z and the con-
tract expresses that the value of the result is the cube of
the positive integer x0.

The context P3-0 expresses the sequences defining the values to be calculated to produce a value corresponding
to the cube of x0. The important result is to show the following theorem with the Rodin platform.

Property 1 (Soundness of the sequence z)

∀k.k ∈ N⇒ z(k) = k ∗ k ∗ k

This property guarantees that calculating the terms of the z sequence allows the value to be calculated using
auxiliary sequences and only addition operations. These elements are given in the context P3-0. The contract can
then be written in the form of a machine. P3-1 contains a single event, FINAL, whose action is z := z(x0).

The method consists in refining the P3-1 machine into a P3-2 machine and introducing an iteration variable i
covering the interval 0..x0 and variables for each sequence uu, vv, ww, tt, zz whose role is to store the values of
the sequences to calculate z(x0). A new event is introduced to update the variables uu, vv, ww, tt, zz and i. The
invariant expresses the link between the mathematical values of the sequences u, v, w, t, z and the values stored
and calculated in the variables uu, vv, ww, tt, zz. The invariant is fairly easy to determine, but we probably need
to provide more relationships between the different sequences, so we come back to those sequences which have
expressions that only mention i.

Property 2 (Properties of sequences u,v,w,t)
– ∀k ∈ N : vk = 3 ∗ k ∗ k
– ∀k ∈ N : wk = 3 ∗ k + 1

– ∀k ∈ N : uk = k

– ∀k ∈ N : tk = 3 ∗ k + 3

The properties are proved in the context of P3-0 and will be used in the refinement of the P3-2 machine.
We introduce variables that point to the elements of the sequences that are sufficient for the computation. The
refinement of P3-2 into P3-3 amounts to adding a variable for each sequence cu, cv, cw, ct, cz and these variables
verify the following invariant property:

inv1 : 0 ≤ i ∧ i ≤ x0 ∧ cv = vv(i)
inv2 : cw = ww(i)
inv3 : cz = zz(i)
inv4 : ct = tt(i)
inv5 : cu = uu(i)
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In addition, the events final and step are refined by making the guards verifiable. An expression of the form
x0 ∈ dom(zz) or x0 /∈ dom(zz) is difficult to translate efficiently into an algorithmic language. Thus, the new
guard i < x0 implies x0 /∈ dom(zz) and the new guard i = x0 implies x0 ∈ dom(zz). The resulting machine is
therefore more deterministic and more approximate to an algorithmic expression. The proofs are automatic.

We finish by hiding the variables uu, vv, ww, tt, zz in a refinement P3-4 of the machine P3-3. It remains to
use the property of sequences that we have proved in the context. The proof effort made in the context of P3-4 pays
off when it comes to expressing the invariant properties constituting the loop invariant of the iterative algorithm
produced from this machine.

The variable cu is useless, since it contains i. We have translated the P3-4 machine in the form of an ACSL
algorithm in the listing ?? verified by the Frama-c (?) application automatically. We obtained a cross-check of the
algorithm obtained by translation from the P3-i machines.

Listing 1.1: ACSL power3.c

/ *@ r e q u i r e s 0 <= x ;
e n s u r e s \ r e s u l t == x * x * x ;

* /
i n t power3 ( i n t x )
{ i n t r , cz , cv , cu , cw , c t , i ;

cz =0; cv =0;cw =1; c t =3 ; i =0 ;
/ *@

@ loop i n v a r i a n t c t == 6* i +3;
@ loop i n v a r i a n t cv== 3* i * i ;
@ loop i n v a r i a n t cw == 3* i +1;
@ loop i n v a r i a n t c z == i * i * i ;
@ loop i n v a r i a n t i <= x ;
@ loop a s s i g n s c t , cz , i , cv , cw , r ; * /

whi le ( i <x )
{

cz=cz+cv+cw ;
cv=cv+ c t ;
c t = c t +6 ;
cw=cw +3;
i = i +1 ;}

r =cz ; re turn ( r ) ;
}

The bb-power3 project contains all the machines used to develop this algorithm.

1.3.2. Problem 3: Searching a value in an array

The problem is to find the occurrence of a value x in an array t of dimension n. There are no constraints on the
array or the search technique.
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variables t, n, x, r

definitions

pre(x0, , r0)
def
=

x0 ∈ V
t0 : 1..n0→ V
r0 ∈ Z×BOOL

requires

x0 ∈ V
t0 : 1..n0→ V
r0 ∈ Z×BOOL

ensures

 tf = t0 ∧ nf = n0

x /∈ ran(t)⇒ rf = (0, FALSE)
x ∈ ran(t)⇒ prj2(rf ) = FALSE⇒ tf (prj1(rj)) = x

This problem must be reformu-
lated in the form of a sequence
that expresses for a value i ∈ 0..n
whether the array t contains the
value x between 1 and n. As soon
as the value is found in i, u(j) is
equal to x and the value found is
i. If the value x is not in the table,
then the sequence u is equal to the
pair (0, FALSE).
We will define the sequence u in
the context of S-0 and use the
same methodology.

The context S0 contains definitions of the data t0, n0, x0 and the axioms defining the sequence u whose value
u(n0) is the expected solution.

CONTEXT S0

sets V

CONSTANTS n t x u

AXIOMS
@axm1 n ∈ N
@axm2 t ∈ 1..n → V
@axm3 x ∈ V
@axm4 u ∈ 0..n → Z × BOOL
@axm5 u(0) = 0 7→ FALSE
@axm6 ∀ i . i ∈ 0..n− 1 ∧ t(i+ 1) = x ∧ prj2(u(i)) = FALSE ⇒ u(i+ 1) = i+ 1 7→ TRUE
@axm7 ∀ i . i ∈ 0..n− 1 ∧ t(i+ 1) ̸= x ⇒ u(i+ 1) = u(i)
@axm8 ∀ i . i ∈ 0..n− 1 ∧ t(i+ 1) = x ∧ prj2(u(i)) = TRUE ⇒ u(i+ 1) = u(i)
theorem @th1 ∀ i . i ∈ 1..n ∧ prj2(u(i)) = FALSE ⇒ ( ∀ k. k ∈ 1..i ⇒ t(k) ̸= x)
theorem @th2 ∀ i . i ∈ 1..n ∧ prj2(u(i)) = TRUE ⇒ ( ∃ k. k ∈ 1..i ⇒ t(k) = x)
theorem @th3 ∀ i . i ∈ 1..n ∧ prj2(u(i)) = TRUE ⇒ ( t(prj1(u(i))) = x)

end

The machine S1 expresses that the desired value is u(n0) and in fact expresses the contract for this problem.
Unlike the Unlike the previous cases, the S1 machine is refined into a S-2 machine which introduces the variables
i and uu which define the inductive calculation scheme and which introduces two events step1 and step2 which
simulate a conditional instruction according to the axioms defining u. The process continues with the introduction
of the value of the sequence uu useful for the calculation, i.e. cu in the S3 machine. The S4 machine hides the uu
variable and produces a fairly classic algorithm.

r := (0, FALSE) ∥ k := 0 ∥ cuu := (0, FALSE)
while k < n do
if t(k + 1) = x then
if prj2(cuu) = FALSE then
k := k + 1 ∥ cuu := (k + 1, TRUE)

else
k := k + 1 ∥ cuu := (k + 1, TRUE)

elsek := k + 1||cuu := cuuelsek := k + 1||cuu := cuuod;

The project db-searching contains all the machines used to develop this algorithm.
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1.3.3. Problem 4: Computing a primitive recursive function

Recursive primitive functions correspond to bounded iterations and a recursive primitive function is constructed
from a scheme using two recursive primitive functions to define a function whose value we want to construct the
algorithm that calculates its value. Examples of such functions are addition, multiplication, division, primality, . . .

variables x, n, r

services
H ∈ N× N× N→ N
G ∈ N→ N
F ∈ N× N→ N
F = PRIMREC(G,H)

requires
(
x0 ∈ N
n0 ∈ N

ensures
(
xf = x0 ∧ nf = n0

rf = F (x0, n0)

The problem is to calculate the function F defined using two other func-
tions G and H which are calculated by algorithms. algorithms. F is
defined by the following equation: for any natural natural value x,y,{
F (x, 0) = G(x)
F (x; y + 1) = H(x, y, F (x, y))

The function F is defined using G and H, which are themselves defined by the
same calculability schemes. This function F is itself a sequence which is spe-
cialised in v. We obtain the following algorithm.

r :∈ Z ∥ k := 0 ∥ cv := G(x)
while k < x do
k := k + 1 ∥
cv := H(x, k, cv)
od;
r := cv

The eb-primitiverecursive archive contains all the machines used to develop this algorithm.

Jean-Raymond Abrial (?, Chapter 15) gives a list of programs built using this methodology and provides the
Rodin1archives. It is important to note that Jean-Raymond Abrial’s examples begin with a machine with an event
final modelling the calculation corresponding to the problem solved, but also an event progress whose status
anticipated means that events will appear to model one or more loops. This event models the implicit and hidden
presence of intermediate calculations which must respect the invariant of the abstraction level. This event conserves
or preserves the calculation and its invariant; we sometimes call it keep as opposed to an event which is always
present called skip. Finally, it is quite clear that the translation still requires an intervention to produce an executable
program as we have shown with the ?? algorithm and this allows us to check that the translation is correct since
Frama-C is used to check the contract obtained. The loop invariant is derived from the Event-B development. Jean-
Raymond Abrial uses Hoare triples to express the specification of the problem to be solved and we prefer to use
contracts that are available in programming languages such as ACSL/Frama-C or Spec#/Boogie.

1.4. Design of a Recursive Sequential Algorithm

In this section, we will apply the simple idea of analysing the diagram in figure ?? to develop a recursive
program or algorithm. We will also promote one-shot refinement. In the previous section, we refined as long
as necessary, especially as long as we obtained a set of events corresponding to computable elements. We have
produced the EB2RC plugin (?) , which implements this idea.

1.4.1. The “Call as Event” Idea

The refinement-based design of iterative sequential algorithms uses a sequence of values in a domain D and
the computation process is based on the recording of the values of the sequence. In the case of the call-as-event
paradigm, the pattern is based on the link between the occurrence of an event and a call of a function or procedure
or method satisfying the pre-condition and post-condition respectively at the call point and the return point. The
context C0 defines the sequence of values and the definition of the sequence is used as a guide for the shape of
events. The definitions of sequence are reformulated by a diagram which is simulating the different cases when the
procedure under development is called namely P (x, r).

The diagram is derived from the Event-B model called ALGOREC and is a finite state diagram. It includes a
liveness proof very close to the proof lattices of Owicki and Lamport (?). We use special names for events in the

1. The link https://web-archive.southampton.ac.uk/deploy-eprints.ecs.soton.ac.uk/122/index.html gives
a list of sequential program developments with a tutorial detailing how to refine and what to transform.
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start ∧ x ∈ N

start ∧ x ∈ N start ∧ x ∈ N

end ∧ x ∈ N ∧ r = u(x)

end ∧ r = u(0)

reccall ∧ tr = u(x− 1)

end ∧ r = u(x)

x = 0 x ̸= 0

P(0,r): x = 0

P(x-1,tr): x ̸= 0

P(x,r): x ̸= 0

Figure 1.2. Organisation of the computation in a recursive solution using assertion
diagram

diagram: P(0,r): x = 0 stands for the event observed when the procedure P(x,r) is called with x=0; P(x-1,tr):
x ̸= 0 models the observation of the recursive call of P; P(x,r): x ̸= 0 stands for the event observed when the
procedure P(x,r) is called with x ̸= 0. P(0,r): x = 0 and P(x,r): x ̸= 0 are refining the event computing which is
observed when the procedure P is called.

MACHINE ALGOREC
REFINES PREPOST
SEES C0
VARIABLES
r, pc, tr

INVARIANTS
art : pc ∈ L
inv1 : tr ∈ D
inv2 : pc = callrec⇒ tr = v(x− 1)
inv3 : pc = end⇒ r = v(x)

The refinement is an organisation of the inductive definition
using a control variable pc. The control variable pc is organ-
ising the different steps of the computations simulated by the
events. The invariant is derived directly from the definitions of
the intermediate values. Proof obligations are simple to prove.
It remains to prove that the values of the sequence v correspond
to the required value in the post-condition.

Event P(x,r):x=0
REFINES computing
WHEN

grd1 : x = 0
grd2 : pc = start

THEN
act1 : r := d0
act2 : pc := end

END

Event P(x-1,tr):x/=0
WHEN
grd1 : pc = start
grd2 : x ̸= 0

THEN
act1 : tr := v(x− 1)
act2 : pc := callrec

END

Event P(x,r):x/=0
REFINES computing
WHEN

grd1 : pc = callrec
THEN

act1 : r := f(tr)
act2 : pc := end

END

The machine is simulating the organisation of the computations following two cases according to the figure ??.
The first case is the path on the left part of the diagram and is when x is 0 and the second case if when x is not 0.

The first path is a three steps path and is labelled by the condition x = 0 an d the event P(0,r):x=0. The event
P(x,r):x=0 is assigning the value d0 to r according to the definition of u(0). It refines the event computing in the
abstraction. The third step is an implication leading to the postcondition.

The second path is a four steps path and is labelled by the condition x ̸= 0, then the event P(x-1,r):x ̸= 0 is
modelling the recursive call of the same procedure. Finally the event P(,r):x ̸= 0 is refining the event computing.
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The call as event paradigm is applied when one considers that one event is defining the specification of the recursive
call and the user is giving the name of the call to indicate that the event should be translated into a call. The EB2RC
plugin (?) generates automatically a C-like program.

The model ALGOREC is simple to checked. Proof obligations are simple, because the recursive call is hiding
the previous values stored in the variable vv of the iterative paradigm. The prover is much more efficient.

ALGOREC

PREPOST pre/post specification

algorithm

C0

FORMALISATION

TRANSLATION

VERIFICATION

SEES

SEES

REFINES

Figure 1.3. The recursive pattern

The recursive pattern is linked to a diagram which is helping to structure the solution. We have labelled arrows
by guards or by events. The diagram helps to structure the analysis based on the inductive definitions. Following
this pattern, we have developed the ERB2RC plugin based on the identification of three possible events. When a
pre/post specification is stated, the program to build can be expressed by a simple event expressing the relationship
between input and output and it provides a way to express pre/post specification as events. The first model is a very
abstract model containing the pre/post events.

Since the refinement-based process requires an idea for introducing more concrete events. A very simple and
powerful way to refine is to introduce a more concrete model which is based on an inductive definition of outputs
with respect to the input.

A first consequence is that the concrete model is containing events which are computing the same function
but corresponding to a recursive call expressed as events (Event rec%PROC(h(x),y)%P(y)). The event Event
rec%PROC(h(x),y)%P(y) is simply simulating the recursive call of the same function and this expression makes
the proofs easier. The invariant is defined in a simpler way by analysing the inductive structure and a control
variable is introduced for structuring the inductive computation. We have identified three possible events to use in
the concrete model:

Event
e

where
ℓ = ℓ1
gℓ1,ℓ2(x)

then
ℓ := ℓ2
x := fℓ1,ℓ2(x)

end

Event
rec%PROC(h(x),y)%P(y)

any y
where
ℓ = ℓ1
gℓ1,ℓ2(x, y)

then
ℓ := ℓ2
x := fℓ1,ℓ2(x, y)

end

Event
call%APROC(h(x),y)%P(y)

any y
where

ℓ = ℓ1
gℓ1,ℓ2(x, y)

then
ℓ := ℓ2
x := fℓ1,ℓ2(x, y)

end

1.4.2. Applying the call as event technique

We will illustrate this method of designing recursive programs using a few relevant examples.
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1.4.2.1. Problem 1: Computing the power 2 (λx.x2)

Applying the recursive pattern is made easier by the first steps of the iterative pattern. In fact, the context C0
and the machine PREPOST are the starting points of the iterative pattern as well as the recursive pattern. We use
the computation of the function x2 and we obtained the following refinement of PREPOST. Fig. ?? is the diagram
analysing the way to solve the computation of the value of u(x) following the call-as-event paradigm.

MACHINE square // square(n; r)
REFINES specquare SEES control0

VARIABLES r l tr

INVARIANTS
@inv1 r ∈ N
@inv2 l = end ⇒ r = n ∗ n
@inv3 l = call ⇒ n ̸= 0
@inv4 l = call ⇒ tr = (n− 1) ∗ (n− 1)
@inv5 l ∈ C
@inv6 tr ∈ N
@inv7 l = end ⇒ r = n ∗ n
@inv8 l = end ∧ n ̸= 0

⇒ tr = (n− 1) ∗ (n− 1) ∧ r = tr + 2 ∗ (n− 1) + 1
theorem @inv9 l = call ⇒ n ∗ n = tr + 2 ∗ (n− 1) + 1

EVENTS
EVENT INITIALISATION

then
@act1 r := 0
@act2 l := start
@act3 tr : ∈ N

end

EVENT square(n; r)@n = 0
REFINES square(n; r)

where
@grd1 l = start
@grd2 n = 0

then
@act1 l := end
@act2 r := 0
end

EVENT square(n; r)@n/ = 0 REFINES square(n; r)
where

@grd1 l = call
then

@act1 r := tr + 2 ∗ (n− 1) + 1
@act2 l := end

end

EVENT rec@square(n− 1; tr)@n ̸= 0
where

@grd1 l = start
@grd2 n ̸= 0

then
@act1 l := call
@act2 tr := (n− 1) ∗ (n− 1)

end
end

The variable l is modelling the control in the
diagram. We introduce control points corre-
sponding to assertions in the labels of the di-
agram as C = {start, end, callrec}. Three
events are defined and the invariant is written
very easily and proofs are derived automat-
ically. The event rec%square(n-1;tr) is the
key event modelling the recursive call. In the
current example, we have modified the ma-
chine by using directly the fact that v(n) =
n∗n and normally we had to use the sequence
following the recursive pattern and then we
had to derive the theorem v(n) = n ∗ n.

Proofs are simpler and invariants are easier to extract from the inductive definitions. From the contexts and the
machines we constructed, respecting the rules and choosing a name for the elements that allow us to produce an
algorithm using the EB2RC plugin, we obtain a recursive algorithm that meets the problem specification and we
obtain a diagram that shows the different steps in this algorithm.
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r ←
0 ∧ tr :∈ N

start

r ← 0

tr ←
square(n−

1)

call

r ← tr+2∗
(n− 1) + 1

end

c1
c2

The diagram is produced with tikz and has annotations
defined by this list.

c1 n = 0

c2 n ̸= 0

The algorithm produced is given below and is very simple
to produce from the model.
procedure square(n; r)
begin
r ← 0
tr :∈ N
if n = 0

r ← 0
elsif n ̸= 0

tr ← square(n− 1)
r ← tr + 2 ∗ (n− 1) + 1

endif
end

The invariant states simple and obvious properties related to control points. Theorem 9 is particularly worth
examining. It is easy to derive because it corresponds to the recursive call. All the calls and all the details are swept
under the carpet, leaving only the last call. This shows the importance and interest of recursion.

MACHINE square // square(n; r)
REFINES specquare SEES control0

VARIABLES r l tr

INVARIANTS
@inv1 r ∈ N
@inv2 l = end ⇒ r = n ∗ n
@inv3 l = call ⇒ n ̸= 0
@inv4 l = call ⇒ tr = (n− 1) ∗ (n− 1)
@inv5 l ∈ C
@inv6 tr ∈ N
@inv7 l = end ⇒ r = n ∗ n
@inv8 l = end ∧ n ̸= 0

⇒ tr = (n− 1) ∗ (n− 1) ∧ r = tr + 2 ∗ (n− 1) + 1
theorem @inv9 l = call ⇒ n ∗ n = tr + 2 ∗ (n− 1) + 1

1.4.2.2. Problem 2: Binary search in an array
We solve the problem of searching for a value in a table. The input parameters of the binsearch procedure

are: a sorted array t; the bounds of the array within which the algorithm should search (lo and hi); and the value
for which the algorithm should search (val). Output parameters are result and a boolean flag ok that indicates if
t(result) = val. The procedures pre and post conditions are presented as follow:
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contract binsearch(t, val, lo, hi, ok, result)

requires


t ∈ 0..t.Length −→ N
∀k.k ∈ lo..hi− 1⇒ t(k) ≤ t(k + 1)
val ∈ N
l, h ∈ 0..t.Length
lo ≤ hi


ensures

(
ok = TRUE ⇒ t(result) = val
ok = FALSE ⇒ (∀i.i ∈ lo..hi⇒ t(i) ̸= val

)

EVENT find
any j
where

@grd1 j ∈ lo..hi
@grd2 t(j) = key

then
@act1 ok := TRUE
@act2 i := j

end

EVENT fail
where

@grd1 ∀ k k ∈ lo..hi ⇒ t(k) ̸= key
then

@act1 ok := FALSE
end

The array t is sorted with respect to the ordering over
integers and a simple inductive analysis is applied leading
to a binary search strategy.
The specification is first expressed by two events cor-
responding to the two possible cases: either a key
exists in the array t containing the value val, or
there is no such key. These two events correspond
to the two possible resulting calls to the procedure
binsearch(t, val, lo, hi; ok, result):

– Event find is binsearch(t, val, lo, hi; ok, result)
where ok = TRUE

– Event fail is binsearch(t, val, lo, hi; ok, result)
where ok = FALSE

These two events form the machine called binsearch1
which is refined to obtain binsearch2 (corresponding to
PROCESS of Figure ??). In addition to these events, the
events of this refined machine contains a new control la-
bel, l, which simulates how the binary search is achieved.

The refinement of binsearch1 is interesting for showing an invariant derived from the properties of the decom-
position following the analysis of the searching process. The invariant is explicitly considering the role of the index
middle and it is a clear statement of the property. We say that the recursivity is putting the dust under the carpet
and it makes simpler to write and to read the solution.

MACHINE binsearch2 REFINES binsearch1 SEES binsearch0

VARIABLES i ok l mi

INVARIANTS
@inv1 i ∈ 1..n
@inv2 l ∈ LOC
@inv3 dom(t) = 1..n
@inv4 mi ∈ 1..n
@inv5 l = middle ⇒ lo < hi ∧ mi ∈ lo..hi
@inv6 l = middle ∧ key < t(mi) ⇒ ( ∀ k k ∈ mi..hi ⇒ t(k) ̸= key)
@inv7 l = middle ∧ key > t(mi) ⇒ ( ∀ k k ∈ lo..mi ⇒ t(k) ̸= key)
@inv8 l = end ∧ ok = TRUE ⇒ i ∈ lo..hi ∧ t(i) = key
@inv9 l = end ∧ ok = FALSE ⇒ ( ∀ k k ∈ lo..hi ⇒ t(k) ̸= key)
theorem @inv10 lo..hi ⊆ 1..n
theorem @inv11 ( ∃ j l = middle ∧ j ∈ mi+ 1..hi ∧ key > t(mi) ∧ t(j) = key ∧ mi+ 1 ≤ hi)

⇒ (mi+ 1 ≤ hi)

The first events are the INITIALISATION event, the two events m1 and m2 corresponding the the case mo =
hi and the split event which is corresponding to the case mo ̸= hi. The events are written the case analysis.
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EVENT INITIALISATION
then

@act1 i : ∈ 1..n
@act2 ok := FALSE
@act3 l := start
@act4 mi : ∈ 1..n

end

EVENT m1 REFINES find
where

@grd1 l = start
@grd2 lo = hi
@grd3 t(lo) = key

with
@j j = lo

then
@act1 l := end
@act2 ok := TRUE
@act3 i := lo

end

EVENT m2 REFINES fail
where

@grd1 l = start
@grd2 lo = hi
@grd3 t(lo) ̸= key

then
@act1 l := end
@act2 ok := FALSE

end

EVENT split
where

@grd1 l = start
@grd2 lo < hi

then
@act1 l := middle
@act2 mi := (lo + hi)2

end

The split event directs the analysis and divides the exploration space into three parts of the indexes. Figure ??,
the m3 event considers the case where the mi index is the one where the searched value is found. Then the other
two events correspond to the segment between mi+1 and hi and are in fact recursive calls to the procedure under
construction. These two events refine find and fail respectively. We need to add two more events corresponding to
the segment lo,mi− 1 segment to complete the model.

Figure 1.4. Visualized Representation of the Binary Search Algorithm

A textual representation of the binary search algorithm is constructed by the EB2RC. The produced algo-
rithm (as shown in Algorithm ??) has been compared to the algorithm produced by hand by the authors. The two
algorithms are identical up to a slight reformatting.
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Model Total Auto Manual Reviewed Undischarged % auto
binsearch1 5 5 0 0 0 100 %
binsearch2 71 63 8 0 0 78 %

Table 1.1. Proof effort of our refinement approach for the binary search case study

The proof effort of our refinement approach for the Binary Search case study is illustrated in Table ??. The first
abstract model is proved automatically and the second concrete model is automatic in 78 % of its proof obligations.

The integrated development framework takes this into consideration. As shown in Fig. ??, we suggest to
translate every recursive algorithm ALGORITHM into a partially annotated and iterative OPTIMISED AL-
GORITHM to be verified within the Spec# Programming System. In (?), we have proposed and proved a sound
translation procedure from ALGORITHM to OPTIMISED ALGORITHM to perform this task. For example,
the iterative version of the binary search algorithm in Spec# is shown in Fig. ??.

By sending this program to Spec#, Spec# reports the program as verified. No user interaction is required in this
verification as all assertions required (preconditions, postconditions and loop invariants) have been generated as
part of the refinement and transformation of the initial abstract specification into the final iterative algorithm. The
automatic verification of the final Spec# program is available online at http://www.rise4fun.com/SpecSharp/
kyKW.

Recursive Algorithm binsearch(t,lo,hi,val;ok,result) generated by EB2RC
begin
ok := FALSE;mi := 0;
if lo = hi ∧ t(lo) = val then
ok := TRUE;
result := lo;

elseif lo = hi ∧ t(lo) ̸= val then
ok := FALSE;

elseif lo < hi then
mi := (lo+ hi)÷ 2;
if t(mi) = val then
ok := TRUE;
result := mi;

elsif val > t(mi) ∧mi+ 1 ≤ hi then
ok, result := binsearch(t,mi+ 1, hi, val);

elsif val < t(mi) ∧ lo ≤ mi− 1 then
ok, result := binsearch(t, lo,mi− 1, val);

end

1.4.3. Comments on the call as event idea

In the example of subsubsection??, we do not use the event like call%APROC(h(x),y)%P(y) but the event is
clearly a call for another procedure or function. For instance, when a sorting algorithm is developed, you may need
an auxiliary operation for scanning a list of values to get the index of the minimum. It means that we have a way to
define a library of models and to use correct-by-construction procedures or functions. In (?) , we detail the tool and
the way to define a library of correct-by-construction programs. The EB2RC plugin is used on this project and we
obtain two files: one containing the algorithm and another containing the diagram built from the Event-B model.

1.5. Final comments

We have presented a use of the Event-B language in the derivation of sequential programs or algorithms. The
first technique uses the sequences of values leading to a given term, which constitutes the required solution. This is
the term that constitutes the desired solution. The calculation of the square or the cube is carried out by defining a
sequence in which one of the terms is the value of the square or the cube. Refinement is a very general relationship
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c l a s s BS {
i n t B i n a r y S e a r c h ( i n t [ ] t , i n t va l , i n t lo , i n t hi , bool ok )

r e q u i r e s 0 <= l o && l o < t . Length && 0 <= h i && h i < t . Length ;
r e q u i r e s l o <= h i && 0 < t . Length ;
r e q u i r e s f o r a l l { i n t i in ( 0 : t . Length ) , i n t j in ( i : t . Length ) ; t [ i ] <= t [ j ] } ;
ensures −1 <= r e s u l t && r e s u l t < t . Length ;
ensures (0 <= r e s u l t && r e s u l t < t . Length )==> t [ r e s u l t ] == v a l ;
ensures r e s u l t == −1 ==> f o r a l l { i n t i in ( l o . . h i ) ; t [ i ] != v a l } ;

{ i n t mi = ( l o + h i ) / 2 ;
whi le ( ! ( l o == h i && t [ l o ] == v a l ) | | ( l o == h i && t [ l o ] != v a l )

| | ( l o < h i && ( mi == ( l o + h i ) / 2 ) && t [ mi ] == v a l ) )
i n v a r i a n t 0 <= l o && l o < t . Length && 0 <= h i && h i < t . Length ;
i n v a r i a n t 0 <= mi && mi < t . Length ;
i n v a r i a n t ( v a l < t [ mi ] ) ==> f o r a l l { i n t i in ( mi . . h i ) ; t [ i ] != v a l } ;
i n v a r i a n t ( v a l > t [ mi ] ) ==> f o r a l l { i n t i in ( l o . . mi ) ; t [ i ] != v a l } ;

{ mi = ( l o + h i ) / 2 ;
i f ( ( mi+1 <= h i ) && ( v a l > t [ mi ] ) ) l o = mi +1;
e l s e i f ( ( l o <= mi −1) && ( v a l < t [ mi ] ) ) h i = mi − 1 ;

}
i f ( ( l o == h i ) && ( t [ l o ] == v a l ) ) { ok = t r u e ; re turn l o ; }
e l s e {

i f ( ( l o == h i ) && ( t [ l o ] != v a l ) ) { ok = f a l s e ; re turn −1;}
e l s e i f ( ( l o < h i ) && ( t [ mi ] == v a l ) ) { ok = t r u e ; re turn mi ; }
e l s e { ok = f a l s e ; re turn −1;}

}
}

}

Figure 1.5. Binary Search C# program corresponding to the generated iterative
procedure.

on a set of also very general models. The discipline of refinement begins with a technique that encourages us
to experiment with the model variables, reducing them to those used exclusively for calculation. This approach
helps us grasp the concepts of model and ghost variables, which are crucial in certain proof tools. In our case, we
introduce them and then hide them in the abstract models and they make it easier to prove and state invariants.
The method based on refinement is very close to the programming from specifications technique proposed by
Carroll Morgan (?). The second technique is simpler because it relies on inductive definitions that are interpreted
in the recursive paradigm. The objective is to save refinement and develop at a level of refinement. The resulting
program is recursive and must be derecursed and simplified. However, it is relatively easy to produce using our
event conventions. In this case, we noted that the proofs were relatively simpler to derive. Both techniques rely
on experimental plugins but could be combined. Figure ?? illustrates an environment for co-ordinating the various
techniques for relatively complex sequential systems, but a new formal IDE integrating these techniques and close
to the diagram in Figure n?? needs to be developed. Very naturally, the development of concurrent, parallel or
distributed algrorithms or programs and the chapter Design of Correct by Construction Distributed Algorithms will
provide some elements.
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