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1.1. Introduction

The Event-B (Abrial 2010 ; Cansell and Méry 2007) method is based on a modelling language used to describe
state-based models and safety properties of those state-based models. The originality of Event-B lies in its ability
to enable incremental and proof-based modelling of reactive systems. The Event-B language contains both set
notations and a first-order predicate calculus; it offers the possibility of defining models of reactive systems called
machines and contexts and includes the refinement relationship that allows us to follow an incremental development
methodology. An Event-B machine is used to describe reactive systems, i.e. systems that react to their environment
and its stimuli. An important property of such machines is that they maintain an (inductive) invariant describing the
set of reachable states of the current system. The Event-B language has been designed from the classical B (Abrial
1996a) language and proposes a general framework for developing reactive systems, using a progressive approach
to model design by refinement. Refinement (Back 1979 ; Dijkstra 1976 ; Back and von Wright 1998 ; Back and
Kurki-Suonio 1989) is a relation linking two machines (or models), expressing an enrichment of one model by
another; the refinement of an abstract model by a concrete model means that the concrete model simulates the
abstract model and that all invariance properties (inductive or not) of the abstract model are preserved in the
concrete model. Event-B aims to express system models by an inductive invariant and by invariance properties,
also called as safety properties. In the course of the presentation of this language, we will see that that liveness
properties of the type ⇝ leads to can also be implicitly integrated via the verification conditions for each ⇝
property to be verified. We will also make a comparison with other state-based languages such as UNITY (Chandy
and Misra 1988) or TLA+ (Lamport 2002a, 1994). We will look at the induction principles used in the Event-
B method and then describe the elements that make up the syntax and the verification conditions called proof
obligations.

1.2. Modelling Reactive Systems

Here are some basic elements for modelling what we will call a reactive system or simply a system. Modelling
a system is done using well-known recipes, which we will recall first.

Definition 1 (transition system)

A transition system ST is given by a set of states Σ, a set of initial states Init and a binary relation R on Σ.

The set of terminal states Term defines specific states, identifying particular states associated with a termina-
tion state; this set can be empty, in which case the transition system does not terminate; this aspect can be used

,
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2 Modelling Software-based Systems

to model operating system programs that do not and should not terminate. We use the term system rather than
program because we can describe more general entities than program. in the computer sense, but also because this
formalism can be used for interactive, concurrent, distributed or hybrid applications1. Our definition is general, but
we will apply it first to discrete systems. The idea is to observe transformations on the states of the system. Before
modelling a system by a transition system, we must observe what constitutes the state of the system and induce
transformations that operate on that state. A transformation is caused by an event that updates a temperature from
a sensor, or a computer updating a computer variable, or an actuator sending a signal to a controlled entity or a
biology evolution. An observation of a system S is based on the following points:

– a state s ∈ Σ allows you to observe elements and reports on these elements, such as the number of people in
the meeting room or the capacity of the room: s(np) and s(cap) are two positive integers.

– a relationship between two states s and s′ observes a transformation of the state s into a state s′ and we will
note s R−→ s′ which expresses the observation of a relationship R: R = s(np) ∈ 0..s(cap) − 1 ∧ s′(np) =
s(np) + 1 ∧ s′(cap) = s(cap) is an expression of R observing that one more person has entered the room.

– a trace s0
R0−→ s1

R1−→ s2
R2−→ s3

R3−→ . . .
Ri−1−→ si

Ri−→ . . . is a trace generated by the different observations
R0, . . .Rp, . . .

We insist that we observe changes of state that correspond either to physical or biological phenomena or to
artefactual structures such as a program, a service or a platform. An observation generally leads to the identifica-
tion of a few possible transformations of the observed state, and the closed-model hypothesis follows naturally.
One consequence is that there are visible transformations and invisible transformations. These invisible trans-
formations of the state are expressed by an identity relation called event skip (or stuttering (Lamport 1994) or
time-stretching (Abrial 1996b)). Event-B modelling produces a closed model with a skip event modelling what is
not visible in the observed state.

To express properties, a language of assertions L (or a language of formulae) is important. To simplify, we
can take the assertion language P(Σ) (the set of parts of Σ) and φ(s) (or s ∈ φ̂) means that φ is true in s.
The assertion language can be used to express state properties, but the assertion language in question may not
be sufficiently expressive. In the context of program correctness, we will assume that assertion languages are
sufficiently complete (in Cook’s sense), which means that the (state) properties required for completeness can be
expressed in the language in question. Properties of a system S which interest us are the state properties expressing
that nothing bad can happen. In other words, we wish to express state properties such as the number of people in
the meeting room is always smaller than the maximum allowed by law or the computer variable storing the number
of wheel revolutions is sufficient and no overflow will happen. A. van Gasteren and G. Tel (van Gasteren and Tel
1990) make a very important comment in the definition of what is always true and what is invariant and we choose
to refer to state properties that are always true as safety properties. Safety properties are, for example, the partial
correctness (PC) of an algorithm A with respect to its pre/post specifications (PC), the absence of errors at runtime
(RTE) . . . Properties are expressed in the language L whose elements are combined by logical connectors or by
instantiations of variable values in the computer sense called flexible variables (Lamport 1994). We assume that a

system S is modelled by a set of states Σ, and that Σ
def
= Var −→ D where Var is the variable (or list of variables)

of the system S and D is the domain of possible values of variables. The assertion language L can be used to define
first-order predicate calculus formulas using set-theoretic operations (∈, ⊆, ∪, . . . ) and operators (∧, ∨, . . . ). The
interpretation of a formula P in a state s ∈ Σ is denoted [[P ]](s) or sometimes s ∈ P̂ . This hypothesis makes it
possible to transfer from an assertion to the set of states validating this assertion. The definition of the validity of
an assertion of L can be given in an inductive form of [[P ]](s). The aim is not to give a complete definition but
to give an idea of the interpretation of formulae, in order to expose elements specific to the Event-B language. A
distinction is made between flexible variable symbols x and logical variable symbols v, and constant symbols c are
used.

Example - 1 (interpretation of formulae)
1) [[x]](s) = s(x) = x: x is the value of the variable x in s.
2) [[x]](s′) = s′(x) = x′: x′ is the value of the variable x in s′.

1. We will see that so-called hybrid systems or applications require special treatment in terms of mathematical properties
involving discrete and continuous domains, in particular Hilbert spaces. These elements will be the subject of two dedicated
chapters in the second book in this series, which will complete the presentation of event modelling.
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3) [[c]](s) = c is the value of c in s, in other words the value of the constant c in s.
4) [[φ(x)∧ψ(x)]](s) = [[φ(x)]](s) and [[ψ(x)]](s) where and is the classical interpretation of symbol ∧ accord-

ing to the truth table.

5) [[x = 6∧ y = x+8]](s)
def
= [[x]](s) = [[6]](s) and [[y]](s) = [[x]](s)+ [[8]](s) = (x = 6 and y = x+8) where

y is a logical variable distinct of x and where [[x]](s) = s(x) = x.

We use notations which simplify the reference to states; thus, [[x]](s) is the value of x in s and its value will be
distinguished by the font used: x is the tt font of LATEX and x is the math font of LATEX. In this way, we can use
the name of the variable x as its current value, i.e. x and [[x]](s′) is the value of x in s′ and will be noted x′. So
[[x = 6]](s) ∧ [[y = x + 8]](s′) will be simplified to x = 6 ∧ y′ = x′ + 8. The consequence is that we can write
the transition relation as a relation linking the state of the variables in s and the state of the variables in s′ using
the prime notation as defined by L. Lamport for TLA (Lamport 1994). We distinguish several types of variable
depending on whether we are talking about the computer variable, its value or whether we are defining constants
such as np, the number of processes, or π, which designates the constant π. In the Event-B approach, a current
observation refers to a current state for both endurant and perdurant information data in the sense of the Dines
Bjørner (Bjørner 2021) approach.

Definition 2 (flexible variable )

A flexible variable x is a name related to a perdurant information according to a state of the (current observed)
system:

– x is the current value of x in other words the value at the observation time of x.
– x′ is the next value of x in other words the value at the next observation time of x.
– x0 is the initial value of x in other words the value at the initial observation time of x.

A logical variable x is a name related to an endurant entity designated by this name.

For a given system S, we will denote V(S) ( resp. Var(S)) the set of logical (flexible) variables of the system
S. The flexible variables are names used in writing the models and this set is used to distinguish these variables
from other variables. When observing a system S, we wish to express relations between the flexible variables of
this system and we will note such an expression in the form of an assertion of the form P (x) where x is the
current value of the flexible variable x (or a list of flexible variables). The set Var(S) is put into the form x i.e.
x ∈ 1..n → Var(S) where n is the number of flexible variables in the system S. We can write x = x1 . . . xn.
We have defined the flexible variables which allow us to link the values of the D domain of the system we are
observing. Observing a system S means determining the observed values of the D domain. Moreover, if a flexible
variable x is used for modelling a system S, we can use notations as x, x′ or x0. We assume that we can simplify
our process by using the expression x to designate the flexible variable x, since we have defined the two sets of
variables namely logical and flexible.

Definition 3 (state property of a system)

Let S be a system whose flexible variables x are the elements of Var(S). A property P (x) of S is a logical
expression involving, freely the flexible variables x and whose interpretation is the set of values of the domain of
x: P (x) is true for x, if the value x satisfies P (x).

For each property P (x), we can associate a subset of D denoted P̂ and, in this case, P (x) is true for x. is
equivalent to x ∈ P̂ .
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Examples of property are listed as follow:

– P1(x)
def
= x ∈ 18..22: x is a value between 18 and 22 and P̂1 = {18, 19, 20, 21, 22}.

– P2(p)
def
= p ⊂ PEOPLE ∧ card(p) ≤ n: p is a set of persons and that set has at most n elements and

P̂2 = {p1 . . . pn}. In this example, we use a logical variable n and a name for a constant PEOPLE.

In our last example, we used PEOPLE which represents a set of people and which we will therefore use to
write our expressions. Note the list of symbols s1, s2, . . . , sp corresponding to the symbols of the sets that make
up the domain D.

Definition 4 (basic set of a system S)

The list of symbols s1, s2, . . . , sp corresponds to the list of basic set symbols in the D domain of S and s1 ∪
. . . ∪ sp ⊆ D.

Finally, to model a system S, you need symbols for constants and correspond to endurant information data.

Definition 5 (constants of system S)

The list of symbols c1, c2, . . . , cq corresponds to the list of symbols for the constants of S.

In fact, we are not using the classical partition of logic languages, which separates constants symbols on one
side from function symbols on the other. We will give a few examples to get the idea across.

Example - 2 (Examples of constant and set)
– fred is a constant and is linked to the set PEOPLE using the expression fred ∈ PEOPLE which means

that fred is a person from the set PEOPLE.
– aut is a constant which is used to express the table of authorisations associated with the use of vehicles. The

expression aut ⊆ PEOPLE × CARS where CARS denotes a set of cars means that, if a pair p 7→ c ∈ aut,
then p is authorized to use the car c.

The constants of S cover the basic constants and the functions of S. Each constant c of S must be defined by a
list of expressions called axioms.The list of basic sets (resp. constants) is denoted s (resp. c).

Definition 6 (axiom of system S)

An axiom ax(s,c) of S is a logical expression describing a constant or constants of S and can be defined as an
expression depending on symbols of constants expressing a set-theoretical expression using symbols of sets and
symbols of constants already defined.

We give a few examples of axioms that can be defined:

Example - 3 (Examples of axiom)
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– ax1(fred ∈ PEOPLE): fred is a person from the set PEOPLE

– ax2(suc ∈ N→ N ∧ (!i.i ∈ N ⇒ suc(i) = i + 1)): The function suc is the total function which associates
any natural i with its successor.

– ax3(∀A.A ⊆ N ∧ 0 ∈ N ∧ suc[A] ⊆ A ⇒ N ⊆ A): This axiom states the induction property for natural
numbers. It is an instantiation of the fixed-point theorem.

– ax4(∀x.x = 2 ⇒ x+2 = 1): This axiom poses an obvious problem of consistency and care should be taken
not to use this kind of statement as axiom.

We have numbered axioms and we will use this numbering to define axioms of the system S. One assumption
is that axioms are consistent but it should be checked by the user. For any system, we will use a list of axioms to
describe constants of S.

Definition 7 (axiomatics for S)

The list of axioms of S is called the axiomatics of S and is denoted AX(S, s, c) where s denotes the basic sets
and c denotes the constants of S.

Advice (Consistency of the axiomatisation of S)

Checking the consistency ofAX(S, s, c) is an important part of modelling a system. It is quite easy to introduce
inconsistency and tools such as Rodin provide the ProB technique based on the discovery of a model in the logical
sense. However, this technique has its limits and you need to be very careful.

We have defined an axiomatic system AX(S, s, c) for the system S and we will now derive some properties
from this system. These properties will be proved from this axiomatic system and will be the theorems for S.

Definition 8 (theorem for S)

A property P (s, c) is a theorem for S, if AX(S, s, c) ⊢ P (s, c) is a valid sequent.

Theorems for S are denoted by TH(S, s, c).

We have shown how definitions of basis sets, constants, axioms and theorems are organised. The flexible
variables have an essential quality, since they allow us to account for the state of the system under observation.

Let s, s′ be two states of S (s, s′ ∈ Var(S) −→ D). s −→
R

s′ will be written as a relation R(x, x′) where x and

x′ designate values of x before and after the observation of R. We define what is an observed event on the flexible
variables of the observed system S.

Definition 9 (event)

Let Var(S) be the set of flexible variables of S. Let s be the basis sets and c the constants of S. An event e for
S is a relational expression of the form R(s, c, x, x′) denoted BA(e)(s, c, x, x′).
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This definition is borrowed directly from TLA (Lamport 1994) and simplifies the presentation of our prelim-
inaries. On the other hand, we will not borrow the set-theoretic language of TLA+ (Lamport 2002a). We give
examples of events:

Example - 4 (Examples of event)

– BA(e1)(x, x′)
def
= x′ = x+ 1: e1 observes the increase of x by one unit.

– BA(e2)(x, y, x′, y′)
def
= x′ + y′ = x+ y: e2 observes that the values of x and y evolve so that the sum of the

two variables is constant.

Convention (meta-language of proofs)

We choose to use logical expressions of the form P ⇒ Q or ∀x.P (x) or ∀x ∈ E.P (x) in the meta-language
of proofs and formal expressions. This will allow us to present fundamental results on induction principles and
verification conditions. We will then express the verification in a form closer to the logical tools used.

Following an observation of a system S, a set of events E is identified and an event-based model of the system
S is obtained.

Definition 10 (event-based model of a system)

Let Var(S) be the set of flexible variables of S denoted x. Let s be the list of basis sets of the system S. Let c
be the list of constants of the system S. Let D be a domain containing sets s. An event-based model for a system S
is defined by

(AX(s, c), x,D, Init(x), {e0, . . . , en})

where
– AX(s, c) is an axiomatic theory defining the sets, constants and static properties of these elements.
– Init(x) defines the possible initial values of x.
– {e0, . . . , en} is a finite set of events of S and e0 is a particular event present in each event-based model defined

by BA(e0)(x, x′) = (x′ = x).

The event-based model is denoted EM(s, c, x,D, Init(x){e0, . . . , en}) =
(AX(s, c), x,D, Init(x), {e0, . . . , en}).

From this structure, we can define a relationship Next(x, x′) as follows

Next(s, c, x, x′)
def
= BA(e0)(s, c, x, x

′) ∨ . . . ∨ BA(en)(s, c, x, x
′). Modelling a system involves giving the

variable x, the predicate Init(x) characterising the initial values of the variables and a relationship
Next(s, c, x, x′) modelling the relationship between the values before and the values after. Safety properties
express that nothing bad can happen (Lamport 1980). For example, the value of the variable x is always between
0 and 567; the sum of the current values of the variables x and y is equal to the current value of the value z. To
continue our descriptions, we need to introduce the transitive reflexive closure of the relation

Next⋆(s, c, x0, x)
def
=

∨ x = x0
∨ Next(s, c, x0, x)
∨ ∃ xi ∈ D.Next⋆(s, c, x0, xi) ∧Next(s, c, xi, x)
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Definition 11 (safety property)

A property P (x) is a safety property for the system S, if

∀x0, x ∈ D.Init(x0) ∧Next⋆(s, c, x0, x) ⇒ P (x).

The safety property uses a universal expression to quantify the possible values of the variable x. To demonstrate
such a property, we can either check the property for every possible value of x in the domain D,provided that
this set is finite, or use an abstraction of the domain Dor use an induction principle. For the verification for each
possible value, we use an algorithm to calculate the values accessible from an initial state. This technique of
calculating accessible values is often used and is the basis of automatic verification techniques such as model-
checking (McMillan 1993 ; Holzmann 1997 ; Clarke et al. 2000). We consider an inductive technique to prove
safety properties. We observe the logical equivalence between the two equations:

∀x0, x ∈ D.Init(x0) ∧Next⋆(s, c, x0, x) ⇒ P (x) [1.1]

∀x ∈ D.(∃x0 ∈ D.Init(x0) ∧Next⋆(s, c, x0, x)) ⇒ P (x) [1.2]

Thus, the second equation expresses that the accessible values are safe values with respect to P (x) and gives us
the key to the induction principle to be implemented. In fact, the property (∃x0 ∈ D.Init(x0)∧Next⋆(s, c, x0, x))
expresses that x is an accessible value with respect to the Next(s, c, x0, x) relationship and defines a least fixed
point which is an inductive property.

Property 1 (induction principle)

A property P (x) is a safety property for S if, and only if, there exists a property I(x) such that

∀x, x′ ∈ D.

 (1) Init(x) ⇒ I(x)
(2) I(x) ⇒ P (x)
(3) I(x) ∧Next(s, c, x, x′) ⇒ I(x′)

The property I(x) is called an (inductive) invariant and is a particular property that is stronger than the other
safety properties. The justification for this induction principle is quite simple. This property justifies the method
of proof by induction better known as the Floyd/Hoare method (Floyd 1967 ; Hoare 1969), devised by Turing in
1949 (Turing 1949). This property gives a form of induction that must be reduced to more familiar forms. P. and R.
Cousot (Cousot 2000 ; Cousot and Cousot 1979, 1992 ; Cousot 1978) give a complete summary of the principles
of induction equivalent to this principle of induction. We apply these results to the case of event-based models and
obtain an expression for the definition of a safety property. If we transform the properties, we obtain a form closer
to what we will use in the following and closer to the notions of event-based models.

Property 2 (equivalence of induction principles)

The following two statements are equivalent:

(I) There exists a state property I(x) such that:

∀x, x′ ∈ D.

 (1) Init(x) ⇒ I(x)
(2) I(x) ⇒ P (x)
(3) I(x) ∧Next(s, c, x, x′) ⇒ I(x′)
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(II) There exists a state property I(x) such that:

∀x, x′ ∈ D.

 (1) Init(x) ⇒ I(x)
(2) I(x) ⇒ P (x)
(3) ∀i ∈ {0, . . . , n} : I(x) ∧BA(ei)(s, c, x, x′) ⇒ I(x′)

We have thus given an explanation of the induction rule which is used in Floyd (Floyd 1967 ; Turing 1949 ;
Hoare 1969)’s method; this rule makes it possible to put on one side the so-called invariance properties, i.e. those
which require an induction step, and the more general safety properties which require an invariance property, i.e.
those which require an induction step. of invariance, i.e. inductive properties, in order to be proven. The Event B
method implements these two types of property using the INVARIANTS clause for invariants and the THEOREMS
clause for safety properties. We deduce that any invariance property is a safety property. We will describe the
Event-B language and the method for incremental development of event-based models. The following verification
conditions are derived from the above properties.

Definition 12 (Verification conditions for a system S and its invariance and safety properties)

Let EM(S) = (AX(s, c), x,D, Init(x), {e0, . . . , en}) an event-based model for system S. EM(S) is a valid
event-based model for S, if the following verification conditions for a system S and its invariance properties I(x)
and safety properties A(x) are valid:

– AX(s, c) ⊢ ∀x ∈ D : Init(x) ⇒ I(x)

– For any event e in S, AX(s, c) ⊢ ∀x, x′ ∈ D : I(x) ∧BA(e)(x, x′) ⇒ I(x′)

– AX(s, c) ⊢ ∀x ∈ D : I(x) ⇒ A(x)

We have used expressions of the form AX(s, c) ⊢ ∀x ∈ D .P (x) and these expressions are equivalent to
AX(s, c) ⊢ ∀x.x ∈ D ⇒ P (x). Considering that x has no free occurrences in AX(s, c), we can simplify the
expression into the form AX(s, c), x ∈ D ⊢ P (x) and meaning that x is a value of D. The expression x ∈ D
constitutes a typing assumption for x and this information is made explicit directly or indirectly in the invariant
I(s, c, x) and in the initial conditions Init(s, c, x′). We assume that the information x ∈ D is expressed in
the initial conditions and in the invariant. The conditions of definition 12 are simplified into the following new
consitions:

– AX(s, c) ⊢ Init(x) ⇒ I(x)

– For any event e in S, AX(s, c) ⊢ I(x) ∧BA(e)(x, x′) ⇒ I(x′)

– AX(s, c) ⊢ I(x) ⇒ A(x)

Before continuing with this presentation dedicated to Event-B , we would like to remind you that Event-B is a
language that supports an approach to developing and modelling systems that are correct by construction. Conse-
quently, the event-based model of the system S EM(S) = (AX(s, c), x,D, Init(x), {e0, . . . , en}) (definition 10)
is characterised by the existence of fixed points on the complete lattice (P(D),⊆).

Property 3 (Fixed-point characterization of invariants and safety properties)

Let D be the value domain of the event model EM(S) == (AX(s, c), x,D, Init(x), {e0, . . . , en}). Let

Next(s, c, x, x′)
def
= BA(e0)(s, c, x, x

′) ∨ . . . ∨BA(en)(s, c, x, x′). Let INIT = {d|d ∈ D ∧ Init(d)}.
– (P(D),⊆) is a complete lattice.
– The function F = λX ∈ P(D).(INIT∪Next[X]) is monotonically increasing and the equationX = F (X)

has a non-empty set of solutions forming a complete lattice.
– Any solution I of the equationX = F (X) satisfies the following property property: I = F (I), INIT ⊆ I ,

Next[I] ⊆ I , lfp(F ) ⊆ I .
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– For any safety property P (x) for system S, lfp(F ) ⊆ {d|d ∈ D ∧ P (d)}

A consequence of this property is that a canonical invariant can be associated with any event-based model and
this invariant is operationally defined by the least fixed-point of the function F. This approach is generally used in
the verification of a system. In the case of the Event-B language, we are interested in a correction-by-construction
approach. Consequently, the problem is to define a model equipped with an invariant that will be verified and
this method is carried out incrementally with the help of refinement. The solutions of the equation X = F (X)
correspond to inductive invariants and are useful for showing that a propertyt P (x) is a safety property. The triptych
(EM(S), I, P ) puts forward an event-based model EM(S) whose (inductive) invariant allows the safety property
P (x) to be verified (by verifying the verification conditions necessary for the verification of the invariance of I and
the safety of P (x).

Before moving on to the presentation of structures for modelling reactive systems, we are interested in the
notion of event and in the so-called feasibility conditions associated with model verification. J.-R. Abrial (Abrial
1996a) founds the verification of abstract machines on the calculus wp and uses the notation [S]P (generalised
substitution), to express that S establishes P.This expression also means that S terminates in P and the termination

predicate is denoted trm(e)(s,c,x). In our case, S is an event e and we recall the definition BA(e)(s, c, x, x′) def
=

∃u.G(u, s, c, x) ∧ BAP (u, s, c, x, x′) where G(u, s, c, x) is a guard and BAP (u, s, c, x, x′) is a before-after
relationBA(e)(s, c, x, x′).

Property 4 (wp and relational styles)

Let be a property P (x).
1) [e]P (x) = ∀u.(G(u, s, c, x)⇒ [x : |BAP (u, s, c, x, x′)]P (x))
2) trm(e)(s, c, x) = ∀u.(G(u, s, c, x)⇒∃x′ : BAP (u, s, c, x, x′))
3) the two following properties are equivalent:

a) I(s, c, x) ∧ trm(e)(s, c, x)⇒ [e]I(s, c, x) (wp)

b)
{
I(s, c, x) ∧G(u, s, c, x)⇒∃x′.BAP (u, s, c, x, x′)
I(s, c, x) ∧G(u, s, c, x) ∧BAP (u, s, c, x, x′)⇒ I(s, c, x′)

(relational)

The first two properties are a simple application of the results of J.-R. Abrial (Abrial 1996a). The third property
is an equivalence between two expressions of the preservation of a state property by an event e. [e] is a predicate
transformer which is defining the weakest precondition of e for a given postcondition and is expressing both partial
correctness of e and termination of e. J.-R. Abrial (Abrial 1996a) has given a complete study of [e] and has given
the foundational ideas of Event-B in his seminal talk at B96(Abrial 1996b). The Atelier-B (Cle n.d.) platform uses
verification conditions in the wp style and the Rodin platform (Abrial et al. 2010) uses a relational style. We are
now sketching an explanation of the equivalence.

Explanation (Proof sketch of the property)

(1)
{
I(s, c, x) ∧G(u, s, c, x)⇒∃x′.BAP (u, s, c, x, x′)
I(s, c, x) ∧G(u, s, c, x) ∧BAP (u, s, c, x, x′)⇒ I(s, c, x′)

is equivalent by transforming the logical connectors.{
I(s, c, x) ∧G(u, s, c, x)⇒∃x′.BAP (u, s, c, x, x′)
I(s, c, x) ∧G(u, s, c, x)⇒∀x′.(BAP (u, s, c, x, x′)⇒ I(s, c, x′))

is equivalent by conjunction of the goals

I(s, c, x) ∧G(u, s, c, x)⇒
{
∃x′.BAP (u, s, c, x, x′)
∀x′.(BAP (u, s, c, x, x′)⇒ I(s, c, x′))
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is equivalent to the transformation of logic connectors

I(s, c, x) ∧G(u, s, c, x)⇒
{
∃x′.BAP (u, s, c, x, x′)
∀x′.(BAP (u, s, c, x, x′)⇒ I(s, c, x′))

is equivalent to the property of the calculation wp

I(s, c, x) ∧G(u, s, c, x)⇒ [x : |BAP (u, s, c, x, x′)]I(s, c, x)

is equivalent by transforming the logical connectors

I(s, c, x)⇒ (G(u, s, c, x)⇒ [x : |BAP (u, s, c, x, x′)]I(s, c, x)

is equivalent by internalising the quantification on u.

I(s, c, x)⇒∀u.(G(u, s, c, x)⇒ [x : |BAP (u, s, c, x, x′)]I(s, c, x)

is equivalent to the property of the calculation wp

I(s, c, x)⇒∀u.[G(u, s, c, x) ===> x : |BAP (u, s, c, x, x′)]I(s, c, x)

is equivalent to the property of the calculation wp{
I(s, c, x)⇒ [@u.G(u, s, c, x) ===> x : |BAP (u, s, c, x, x′)]I(s, c, x)
I(s, c, x)⇒ (G(u, s, c, x)⇒∃x′.BAP (u, s, c, x, x′))

is equivalent to the property of the calculation wp{
I(s, c, x)⇒ [@u.G(u, s, c, x) ===> x : |BAP (u, s, c, x, x′)]I(s, c, x)
I(s, c, x)⇒ trm(e)(x)

is equivalent to the property of the calculation wp

I(s, c, x) ∧ trm(e)(x)⇒ [e](s, c, x)

A consequence of this result is to allow a definition of invariant preservation according to two modes of imple-
mentation (Atelier-B (Cle n.d.) and Rodin (Abrial et al. 2010)). We will break down the definition of preservation
in the form that separates verification into an induction step and a proof of feasibility. In particular, it defines
verification conditions (PO(e)) using these elements as follows.

Definition 13 (verification condition init)

init is an initialisation event and we assume that it is defined as follows:

init def
= begin x : |(initBAP (s, c, x′) end.

The verification condition for init (initialisation) denoted PO(init) is defined by{
(FIS) AX(s, c) ⊢ ∃x′.initBAP (s, c, x′)
(INV ) AX(s, c), initBAP (s, c, x) ⊢ I(s, c, x)

Definition 14 (verification condition e)

The verification condition for e (event e) denoted PO(e) is defined byAX(s, c) ⊢ I(x)∧trm(e)⇒[e]I(s, c, x).
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{
(FIS) AX(s, c), I(s, c, x), G(u, s, c, x) ⊢ ∃x′.BAP (u, s, c, x, x′)
(INV ) AX(s, c), I(s, c, x), G(u, s, c, x), BAP (u, s, c, x, x′) ⊢ I(s, c, x′)

This definition puts forward two conditions INV and FIS which must be verified and which ensure that I(s, c, x)
is preserved. We have specified the elements we are going to use to present the implementation in the Event-B
language.

Convention (label for formal texts)

In the definition of the Event-B language, the implementation is based on a labelling of each formal text (axiom,
theorem, guard, action) and this labelling is noted ℓ(text). This means that the expression ℓ(text) : text appears
in the modelling text. This labelling makes it possible to refer to elements of the model.

1.3. Contexts and Machines in Event-B

1.3.1. Modelling sets, constants, axioms and theorems in a context D

Event-B is organised according to context and machine structures. These structures form the basic structures
for the definition of an experimental model. In a separate chapter, we will look at the theory structure implemented
in the Theory plug-in. Schematically, the relationship between a machine AM; and a context D is expressed by the
link sees which is expressed in the machine AM.

Machine AM Context D
SEES

An Event-B context brings together the definitions of the enduring entities of the system S to be developed and
therefore modelled. Now we refer to the document (Métayer and Voisin 2009) presenting the Event-B mathematical
language constituting the core of the Event-B language.

CONTEXT D
EXTENDS AD
SETS
S1, . . . Sn

CONSTANTS
C1, . . . , Cm

AXIOMS
ax1 : P1(S1, . . . Sn, C1, . . . , Cm)
. . .
axp : Pp(S1, . . . Sn, C1, . . . , Cm)

THEOREMSa

th1 : Q1(S1, . . . Sn, C1, . . . , Cm)
. . .
thq : Qq(S1, . . . Sn, C1, . . . , Cm)

1. The xlause THEOREMS does not exist in the
current verison, but it does make it possible to sep-
arate the a xiomes from the theorems. The Rodin
platform uses a theorem or axiom indication and
produces an italicised version for statements that
are theorems, but axioms and theorems are placed
under the same AXIOMS clause. This representa-
tion may panic the young user.

– Sets s (S1, . . . Sn) are declared in the SETS clause.
– Constants c (C1, . . . , Cm) are declared in the CONSTANTS

clause.
– Axioms are listed in the AXIOMS clause and define properties

of constants.
– Theorems are properties declared in the THEOREMS clause and

must be proved from axioms.
– The context defines a logical-mathematical theory which must

be consistent.
– The EXTENDS clause extends the context and therefore extends

the theory defined by the context of this clause.
– AX(s, c) designates the list of axioms corresponding to the sets

s and constants c.
– TH(s, c) designates the list of theoremscorresponding to the

sets s and constants c.



12 Modelling Software-based Systems

Expression e WD(e)

P ∧Q, P ⇒ Q WD(P ) ∧ (P ⇒WD(Q))

P ∨Q WD(P ) ∧ (WD(P ) ∧ (P ∨WD(Q))

P ⇔ Q WD(P ) ∧WD(Q)

¬P WD(P )

∀L.P , ∃L.P ∀L.WD(P )

⊤ , ⊥ ⊤
finite(E) WD(E)

partition(E1, E2, . . . , En) WD(E1) ∧WD(E2) ∧ . . . ∧WD(En)

E op F with op ∈ {=, ̸=,∈, /∈,⊂, ̸⊂,⊆, ̸⊆} WD(E) ∧WD(F )

Table 1.1. WD for predicates

Expression e WD(e)

F (E)

 WD(E) ∧WD(F )

E ∈ dom(F ) ∧ F ∈ S 7→ T

F ⊆ S × T

E[F ], E 7→ F,E↔ F,E←↔ F,E↔→ F

E↔↔ F,E→ F,E 7→ F,E 7↣ F,E↣ F

E↠ F,E 7↠ F,E↣↠ F,E ∪ F,E ∩ F

E\F,E × F,E ⊗ F,E ∥ F,E ; F,E ◦ F
E ◁ F,E ◁− F,E ▷ F,E ▷− F,E ◁− F

E..F,E + F,E − F,E ∗ F

WD(E) ∧WD(F )

E / F, E mod F WD(E) ∧WD(F ) ∧ F ̸= 0

E ̂ F WD(E) ∧ 0 ≤ E ∧WD(F ) ∧ 0 ≤ F

−E,E−1,P(E),P1(E)

dom(E), ran(E), union(E)
WD(E)

card(E) WD(E) ∧ finite(E)

inter(E) WD(E) ∧ E ̸= ∅
min(E) WD(E) ∧ E ̸= ∅ ∧ (∃v.∀u.u ∈ E⇒ v ≤ u)

max(E) WD(E) ∧ E ̸= ∅ ∧ (∃v.∀u.u ∈ E⇒ v ≥ u)

Table 1.2. WD for unary and binary expressions

Each Event-B expression expr must be well defined, and a verification condition is systematically produced
from the text of the property to be proved expr/WD; the verification condition for establishing that expr is a well-
defined theorem, is denoted expr/WD. Intuitively, an expression expr is well defined, if it obeys certain rules of use,
and it is denoted WD(expr). We have given the tables that define the predicate WD(expr) according to the syntax of
expr and according to the classes of expressions that are predicates, relations . . .

From the tables 1.1, 1.2 and 1.3, we can simply establish the verification condition to be verification condition
to be proved, denoted expr/WD.

Proof Obligation exp/WD

AX(s, c) ⊢WD(expr)

A few examples will illustrate theWD(expr) notation and enable you to understand the verification conditions
produced by the tool Rodin.
Exemple 1 (Examples for WD(expr))

– E1 = ∀k ·k ∈ N⇒ 2 ∗ s(k) = k ∗ k + k
We simply apply the transformations of the tables , and :
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Expression e WD(e)

λP.Q|E ∀FQ.WD(P ) ∧ (Q⇒WD(E))⋃
L.P |E

{L.P |E}
∀L.WD(P ) ∧ (P ⇒WD(E))⋃

E|P
{E|P}

∀lFE .WD(P ) ∧ (P ⇒WD(E))

⋂
L.P |E

∀L.WD(P ) ∧ (P ⇒WD(E))

∧
∃L.WD(P )

⋂
E|P

∀lFE .WD(P ) ∧ (P ⇒WD(E))

∧
∃L.WD(P )

bool(P ) WD(P )

{E1, . . . , En} WD(E1) ∧ . . . ∧WD(En)

I,Z,N,N1, pred, succ,BOOL

TRUE,FALSE,∅,prj1,prj2, id, n
⊤

Table 1.3. WD for other expressions

WD(∀k ·k ∈ N⇒ 2 ∗ s(k) = k ∗ k + k)
=
∀k.WD(k ∈ N⇒ 2 ∗ s(k) = k ∗ k + k)
∀k.WD(k ∈ N) ∧ (k ∈ N⇒WD(2 ∗ s(k) = k ∗ k + k))
∀k.WD(k ∈ N) ∧ (k ∈ N⇒WD(2 ∗ s(k)) ∧WD(k ∗ k + k))
∀k.WD(k ∈ N) ∧ (k ∈ N⇒WD(2) ∧WD(s(k)) ∧WD(k ∗ k) ∧WD(k))
∀k.WD(k) ∧WDS(N) ∧ (k ∈ N⇒WD(2) ∧WD(s(k)) ∧WD(k ∗ k) ∧WD(k))
∀k.⊤ ∧⊤ ∧ (k ∈ N⇒⊤∧WD(s(k)) ∧WD(k ∗ k) ∧WD(k))
∀k.(k ∈ N⇒WD(s(k)) ∧WD(k ∗ k) ∧WD(k))
∀k.(k ∈ N⇒WD(s(k)) ∧WD(k) ∧WD(k) ∧WD(k))
∀k.(k ∈ N⇒WD(s(k)) ∧ ⊤ ∧ ⊤ ∧ ⊤)
∀k.(k ∈ N⇒WD(s(k)))
∀k.(k ∈ N⇒WD(s) ∧WD(k) ∧ k ∈ dom(s) ∧ s ∈ Z 7→ Z ∧ s ⊆ Z× Z))
∀k.(k ∈ N⇒⊤∧⊤ ∧ k ∈ dom(s) ∧ s ∈ Z 7→ Z ∧ s ⊆ Z× Z))
∀k.(k ∈ N⇒ k ∈ dom(s) ∧ s ∈ Z 7→ Z ∧ s ⊆ Z× Z))
We obtain the condition WD(E1):
WD(∀k ·k ∈ N⇒ 2 ∗ s(k) = k ∗ k + k) = ∀k.(k ∈ N⇒ k ∈ dom(s) ∧ s ∈ Z 7→ Z ∧ s ⊆ Z× Z))

– E2
def
= s(0) = 0

WD(s(0) = 0)
=
WD(s(0)) ∧WD(0)
WD(s(0)) ∧ ⊤
WD(s(0))
WD(s) ∧WD(0) ∧ 0 ∈ dom(s) ∧ ∧s ∈ Z 7→ Z ∧ s ⊆ Z× Z)
⊤ ∧⊤ ∧ 0 ∈ dom(s) ∧ ∧s ∈ Z 7→ Z ∧ s ⊆ Z× Z)
0 ∈ dom(s) ∧ ∧s ∈ Z 7→ Z ∧ s ⊆ Z× Z)
We derive the condition WD(E2) using the same rules:
WD(s(0) = 0) = 0 ∈ dom(s) ∧ ∧s ∈ Z 7→ Z ∧ s ⊆ Z× Z)

The verification condition th/TH is quite simple and sometimes requires interaction with the proof assistant.

Proof Obligation th/TH

AX(s, c) ⊢ th
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To conclude this presentation, we present an example of a context in the field of arithmetic. This allows us to
pose a problem that will be used to illustrate the different notations and concepts.

Example - 5 (context for the sum of even or odd natural numbers)

The problem is to calculate the sum s(n) of the natural numbers between 0 and a given integer n, and this sum
s(n) is fairly easy to calculate using the formula classically used in elementary maths books: ∀n.n ∈ N⇒ s(n) =∑k=n

k=0 = n ∗ (n + 1)/2 or 2 ∗ s(n) = n ∗ (n + 1). The problem is to propose an algorithm which calculates this
sum and which respects the correctness property explicitly stated by the relation 2 ∗ s(n) = n ∗ (n + 2). We will
also calculate the sum of the even integers os(n) and the sum of the odd integers es(n). The problem is to calculate
the functions s, es, os, but we need to define these functions and establish a number of inductive properties.

The first step is to define the axiomatic properties (axm1, axm7) of the necessary sets and constants. The
axiom axm7 is an axiomatic expression of induction for the domain of naturals and it will facilitate our proofs by
induction that we will have to establish in the section THEOREMS.

AXIOMS
axm1 : n ∈ N
axm2 : s ∈ N→ N ∧ os ∈ N→ N ∧ es ∈ N→ N
axm3 : es(0) = 0 ∧ os(0) = 0 ∧ s(0) = 0
axm4 : ∀i, l·i ∈ N ∧ l ∈ N ∧ i = 2 ∗ l
⇒s(i+ 1) = s(i) + i+ 1 ∧ es(i+ 1) = es(i) ∧ os(i+ 1) = os(i) + i+ 1

axm5 : ∀i, l·i ∈ N ∧ l ∈ N ∧ i = 2 ∗ l + 1
⇒s(i+ 1) = s(i) + i+ 1 ∧ es(i+ 1) = es(i) + i+ 1 ∧ os(i+ 1) = os(i)

axm6 : suc ∈ N→ N ∧ (∀i·i ∈ N⇒ suc(i) = i+ 1)
axm7 : ∀A·A ⊆ N ∧ 0 ∈ A ∧ suc[A] ⊆ A⇒ N ⊆ A

THEOREMS
th1 : ∀i·i ∈ N⇒ s(i+ 1) = s(i) + i+ 1
th2 : ∀u, v ·u ∈ N ∧ v ∈ N ∧ 2 ∗ u = v⇒ u = v/2
th3 : ∀k ·k ∈ N⇒ 2 ∗ s(k) = k ∗ k + k
th4 : ∀k ·k ∈ N⇒ s(k) = (k ∗ k + k)/2
th5 : ∀k ·k ∈ N⇒ es(2 ∗ k) = 2 ∗ s(k)
th6 : ∀k ·k ∈ N⇒ es(2 ∗ k + 1) = 2 ∗ s(k)
th7 : ∀k ·k ∈ N ∧ k ̸= 0⇒ os(2 ∗ k) = k ∗ k
th8 : ∀k ·k ∈ N⇒ os(2 ∗ k + 1) = (k + 1) ∗ (k + 1)

Theorems (th1, th5, th6, th7, th8) are based on fairly elementary properties. These theorems are proved using
the Rodin tool with the help of the axiom axm7 expressing the induction rule over naturals. They are an important
element in linking the inductive definition of sequences and the property expected for this sequence. Thus, the
inductive definition of the sequence s and the property are linked as follows: ∀i.i ∈ N⇒ s(i) = i ∗ (i+ 1)/2; the
role of the inductive definition of s is to give a method of calculation. We will use this method in the illustration of
refinement.

1.3.2. Modelling states and events in an abstract machine AM

1.3.2.1. The structure of abstract machine

In Section ??, we introduce the notion of an event-based model of a system by the definition 10. Event-B has
the abstract machine structure to represent such a state-based model. We give the syntax of an abstract machine
AM which uses a context D and which describes a state observed by the variable x. This state variable x is
characterised by a set of invariants Ij(s, c, x), j ∈ 1..r and by a set of safety properties SAFEi(s, c, x), i ∈ 1..t.
We continue the description of this structure in the list of points on the right-hand side below.
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MACHINE AM
REFINES M
SEES D
VARIABLES x
INVARIANTS
inv1 : I1(s, c, x)
. . .
invr : Ir(s, c, x)

THEOREMS
th1 : SAFE1(s, c, x)
. . .
thn : SAFEn(s, c, x)

VARIANTS
var1 : varexp1(s, c, x)
. . .
vart : varexpt(s, c, x)

EVENTS
Event initialisation

begin
x : |(Init(s, c, x′))

end
. . .
Event e

any u where
G(u, s, c, x)

then
x : |BAP (u, s, c, x, x′)

end
. . .

END

i

– The machine AM is a model describing a set of events modifying the
variable x declared in the clause VARIABLES and x is a flexible variable
allowing to use notations as x and x′.

– A clause REFINES indicates that the machine AM refines a machine
M which is more abstract; however, we will return to this refinement rela-
tionship and its role in the development process.

– A particular event defines the initialisation of the variable x according
to the relationship Init(s, c, x′).

– A clause INVARIANTS describes the inductive invariant that this ma-
chine is supposed to respect provided that the associated verification condi-
tions are shown to be valid in the theory induced by the context mentioned
by the SEES clause.

– The clause THEOREMS introduces the list of safety properties derived
in the theory induced by the context and the invariant; these properties re-
late to the variables and must be proved valid. It is possible to add theo-
rems about sets and constants; this can help the proofs to be made during
the verification process.

– To conclude this description, we would like to add that events can
carry very important information for the proof process, in particular for
proposing witnesses during event refinement. Furthermore, each event has
a status (ordinary, convergent, anticipated) which is important in the pro-
duction of verification conditions. The clause VARIANTS is linked to events
of convergent status.
We will complete this presentation in the remainder of this section and we
will add to it when we describe the refinement.

Here is an example of a machine that is important for understanding the difference between an inductive invari-
ant and a safety property.

Example - 6 (abstract machine SAFETY)

MACHINE SAFETY
VARIABLES x
INVARIANTS
inv : x = −1

THEOREMS
th : x ≤ 0

EVENTS
Event initialisation

begin
x : |(x′ = −1)

end
Event e

grd : x ≥ 0
then
act : x : |(x′ = x+ 1)

end
END

The variable x is initialised at −1 and, as a result, the
event e is never observed. Since x = −1, the invariant
inv:x = −1 is true and so is the theorem th:x ≤ 0 which
is also true and which is a property of safety property.
This machine observes a system with a state variable that
remains constant. The use of Rodin and ProB confirms
our point. A reading of the short paper by Van Gasteren
and Tel (van Gasteren and Tel 1990) clearly reports the
difference between inv and th.
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An abstract machine AM is a structure modelling an observed system from the point of view of its state
variables but also from the point of view of the domain or domains concerned. Based on the results of section ??
and in particular on the definition 12 we will detail the verification conditions produced to ensure the correctness
of this machine. These verification conditions will allow us to exploit the 6 example. The verification conditions
for a system S and its invariance and safety properties are as follows:

– AX(s, c) ⊢ ∀x ∈ D : Init(s, c, x) ⇒ I(s, c, x)

– AX(s, c) ⊢ ∀x ∈ D : I(s, c, x) ⇒ A(s, c, x)

– For any event e of S, AX(s, c) ⊢ ∀x, x′ ∈ D : I(s, c, x) ∧BA(e)(s, c, x, x′) ⇒ I(s, c, x′)

We have explained that we can simplify these conditions by assuming that x does not occur in AX(s, c), as
follows:

– AX(s, c) ⊢ Init(s, c, x) ⇒ I(s, c, x)

– AX(s, c) ⊢ I(s, c, x) ⇒ A(s, c, x)

– For any event e of S, AX(s, c) ⊢ I(s, c, x) ∧BA(e)(s, c, x, x′) ⇒ I(s, c, x′)

These verification conditions are translated very directly into a list of more basic verification conditions called
proof obligations. We will proceed in three steps corresponding to the three conditions. From the AM machine,
the following notations are derived:

– s: sets seen from the context D .
– c: constants seen from the context D .
– x: flexible variables that define the observed state.
– AX(s, c): axioms seen from the context D .
– Let i ∈ 1..t. THi(s, c): theorems seen from the context D and located before the theorem thi; in particular,

THi(s, c) is empty.

– I(s, c, x): expression of the invariant of AM defined by I(s, c, x)
def
= I1(s, c, x) ∧ . . . ∧ Ir(s, c, x)

– Let j ∈ 1..r. Ij(s, c, x): jth component of the I(s, c, x) of the AM machine.

– A(s, c, x): expression of safety properties of AM defined as A(s, c, x)
def
= SAFE1(s, c, x) ∧ . . . ∧

SAFEn(s, c, x)

– Let i ∈ 1..t. SAFEi(s, c, x): expression of safety properties.

1.3.2.2. Proof obligation th/TH

The verification condition AX(s, c) ⊢ I(s, c, x) ⇒ A(s, c, x) is reduced to a simplified form
AX(s, c), I(s, c, x) ⊢ A(s, c, x). Then we apply the rule for introducing the conjunction to produce the following
conditions for all i ∈ 1..t, AX(s, c), I(s, c, x) ⊢ SAFEi(s, c, x). The proof can then use properties proved in the
previous steps and we have noted them Thi(s, c) and we can thus add these properties to the hypotheses of the
sequent and derive the following verification condition for all i ∈ 1..t,
AX(s, c), Thi(s, c), I(s, c, x) ⊢ SAFEi(s, c, x). The following property is therefore demonstrated.

Property 5 (Safety)

If for any i ∈ 1..t, AX(s, c), Thi(s, c), I(s, c, x) ⊢ SAFEi(s, c, x),
then AX(s, c) ⊢ I(s, c, x)⇒

∧
i∈1..t SAFEi(s, c, x).

This property is translated into the following verification condition for i ∈ 1..t:

Proof Obligation thi/TH

AX(s, c), Thi(s, c), I(s, c, x) ⊢ SAFEi(s, c, x)
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An example of a theorem is the case of the SAFETY machine, which is very simple and has a theorem th :
x ≤ 0 and the verification condition is x ∈ Z, x = −1 ⊢ x ≤ 0 which is quite trivially deduced. We will return to
this example when we have given the verification conditions that ensure the preservation of the invariant I(s, c, x).

1.3.2.3. Proof obligation INITIALISATION/inv/INV
The verification condition AX(s, c) ⊢ Init(s, c, x) ⇒ I(s, c, x) is reduced to the condition

AX(s, c), Init(s, c, x) ⊢ I(s, c, x). Finally, we can apply a second reduction transformation by deriving the
following conditions: for all i ∈ 1..r, AX(s, c), x ∈ D, Init(s, c, x) ⊢ Ii(s, c, x). The following property can be
deduced.

Property 6 (INITIALISATION)

If for any i ∈ 1..r, AX(s, c), Init(s, c, x) ⊢ Ii(s, c, x), then AX(s, c) ⊢ Init(s, c, x) ⇒ I(s, c, x).

Before formulating the verification conditions actually generated by the tool, we recall that the invariant
I(s, c, x) is written as a conjunction I(s, c, x) ≡

∧
i∈{1..r}

Ii(s, c, x). Each element Ii(s, c, x) is labelled invi :

I(s, c, x). This property is translated into the following verification condition for i ∈ 1..r:

Proof Obligation INITIALISATION/invi/INV

AX(s, c), Init(s, c, x) ⊢ Ii(s, c, x)

A second check (FIS) is dedicated to the feasibility which is AX(s, c) ⊢ ∃x.initBAP (s, c, x). We assume
that the expression initBAP (s, c, x) is written in the action part of the event INITIALISATION in the form
act1 : x1 : |initBAP1(s, c, x

′
1), . . . , actp : xp : |initBAP1(s, c, x

′
p), with x = x1 . . . xp (x is partitioned as

p list of variables of x ) and initBAPi(s, c, x
′
i) is constructed from initBAP (s, c, x′). We therefore assume that

initBAP (s, c, x′) ≡
∧

i∈{1..p}
initBAP (s, c, x′i. The decomposition depends on the initial values and one could

advise using a normalised form with p = 1 but we give the general form. This condition is important to prove as it
ensures that the model exists at least in its first state.

Property 7 (feasibility of initial conditions)

Let the following action act1 : x1 : |initBAP1(s, c, x
′
1), . . . , actp :: xp : |initBAP1(s, c, x

′
p) defining the

conditions for initialising disjoint sub-lists of x1, . . .xp variables whose union constitutes the list x. The verification
condition defined by the sequentAX(s, c) ⊢ ∃x.initBAP (s, c, x) is equivalent to the list of sequencesAX(s, c) ⊢
∃xi.initBAPi(s, c, xi) for i ∈ {1..p}.

Proof Obligation INITIALISATION/acti/FIS

AX(s, c) ⊢ ∃xi.initBAPi(s, c, xi) i ∈ {1..p}.

Example - 7 feasibility for the SAFETY machine

In the example SAFETY, the initialization is established, by proving x ∈ Z ⊢ ∃x′.x′ = −1 which is in fact
trivially true for x′ = −1.
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Example - 8 (feasibility with a witness)

We can also initialize a variable c that must satisfy an invariant of the type invariant of the type c ∈ P→B∧c ⊆
a where a is a constant modelling a table of access authorisations for people (P ) to buildings (B), i.e. a ⊆ P ×B.
The initialisation event is written very simply in the form c : |(c′ ∈ P →B ∧ c′ ⊆ a) which expresses the fact that
the initial value of c must satisfy the invariant but does not explicitly give a value c0. The verification condition is
then obtained as follows: a ⊆ P × B ⊢ ∃c′.c′ ∈ P → B ∧ c′ ⊆ a. The solution is to declare a constant c0 which
can be used as a witness in the proof.

Example - 9 (example of an assignment)

A final example is the assignment of an expression e to x, i.e. x := e. to x, i.e. x := e, and in this case the
existence is fairly simple to derive simple to derive, but it will undoubtedly be necessary to demonstrate that the
expression e makes sense according to the WD predicate.

1.3.2.4. Proof obligations e/I/INV et e/I/FIS

In the definition 14, we give these two verification conditions which are intended to ensure the preservation of
the property I(s, c, x) but also to ensure the feasibility of the event e when the invariant I(s, c, x) is valid. The
expressions for these verification conditions are given below:{

(FIS) AX(s, c), I(s, c, x), G(u, s, c, x) ⊢ ∃x′.BAP (u, s, c, x, x′)
(INV ) AX(s, c), I(s, c, x), G(u, s, c, x), BAP (u, s, c, x, x′) ⊢ I(s, c, x′)

We give an initial example which illustrates the central role of these conditions. We take the SAFETY machine
and the event e defined by Event e when grd : x ≥ 0 then act : x : |(x′ = x + 1) end and we consider the

invariant I(x)
def
= inv : x = −1. e/inv/INV is defined by the following expression: I(x), x ≥ 0, x′ = x+1 ⊢ I(x′)

and which is reduced to this expression x = −1, x ≥ 0, x′ = x + 1 ⊢ x′ = −1 which is trivially true since the

hypotheses are inconsistent. A first attempt might have been to replace this invariant by J(x)
def
= x ≤ 0 and, in

this case, the expression to be proved would have been J(x), x ≥ 0, x′ = x + 1 ⊢ J(x′) which simplifies to
x ≤ 0, x ≥ 0, x′ = x + 1 ⊢ x′ ≤ 0, then to x ≤ 0, x ≥ 0, x = 0, x′ = x + 1 ⊢ 1 ≤ 0 ! Obviously, it should
be stressed that I(x) is an inductive invariant and that J(x) is a weaker invariance property which we will call a
safety property or a theorem. So our SAFETY machine is valid since we can prove that I(x) ⊢ J(x). This example
shows the difference between an inductive invariance property (x = −1) and an invariance property or always true
or safety property (x ≤ 0); this difference was pointed out by A. J. M. van Gasteren and G. Tel(van Gasteren and
Tel 1990). The feasibility condition is obvious and therefore poses no particular problem. We will now describe the
verification conditions generated by the Rodin tool and the designation of the verification conditions. A property
of the sequent calculus is used to break the verification conditions and thus divide the proof effort.

Property 8 (Introduction/Elimination of connector ∧)

Let be the following sequent Γ ⊢
∧

i∈{1..t}
Pi.

The proof of this sequence amounts to proving the sequences Γ ⊢ Pi, for all indices i ∈ {1..t}.
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We apply this property to the case of the invariant I(s, c, x) equivalent to
∧

i∈{1..r}
Ii(s, c, x) and with the la-

belling of each Ii(s, c, x) assigning it the label invi. This property is translated into the following verification
condition for i ∈ 1..r:

Proof Obligation e/invi/INV

AX(s, c), I(s, c, x), G(u, s, c, x), BAP (u, s, c, x, x′) ⊢ Ii(s, c, x′)

A second checking (FIS) is dedicated to the feasibility of the event e which is
AX(s, c), I(s, c, x), G(u, s, c, x) ⊢ ∃x′.BAP (u, s, c, x, x′).

Proof Obligation e/act/FIS

AX(s, c), I(s, c, x), G(u, s, c, x) ⊢ ∃x′.BAP (u, s, c, x, x′).

1.3.2.5. Proof obligations e/act/WD et INITIALISATION/act/WD

The verification conditions (INV) and (FIS) ensure that the invariant is preserved and that the events are feasible.
However, there are still to be verified in order to guarantee the validity of formalised objects. The division by zero
is an element which testifies to this need to avoid the silly expressions mentioned by L. Lamport(Lamport 1994,
2002b). Writing of formal expressions is therefore perilous and must be framed by the verification conditions WD
applied for guards and for actions.

Proof Obligation Ie/acti/WD

AX(s, c), I(s, c, x), G(u, s, c, x) ⊢WF (BAPi(s, c, xi)).

Proof Obligation INITIALISATION/acti/WD

AX(s, c) ⊢WD(initBAPi(s, c, xi))

We have presented the three kinds of verification conditions : WD, INV and FIS for validating the inductive
property of the assertion I(s, c, x). We are continuing our gradual discovery of the elements that make it possible
to model a set of events, with a particular focus on events.

1.3.2.5.1. Status of an event

An event e in Event-B is defined by its parameters u, its guards G(u, s, c, x) and its actions
x : |BAP (u, s, c, x, x′) but it has one of three possible status ordinary, convergent or anticipated. In principle, an
Event-B machine preserves an invariant and safety properties called theorems. However, it is possible to use a
variant to model an assertion indicated by a natural integer value or a set value. To understand this point, we need
to remember that the induction rules relating to termination are expressed by a sequence of assertions Pn(x) such
that for each n ∈ N, Pn+1 leads to Pn by the observation of at least one convergent event. In fact, the problem is
to show that the property ∃n ∈ N.Pn(x) leads to a property Q(x) which is linked by the implication
P0(x)⇒ Q(x). Readers familiar with temporal logics will have recognised a property of liveness expressed with
the operator leads to denoted ⇝ (Owicki and Lamport 1982 ; Méry 1986 ; Chandy and Misra 1988 ; Méry and
Mokkedem 1992 ; Lamport 1994 ; Méry 1999). Thus, a liveness property of the form P (x) ⇝ Q(x) requires the
use of an induction rule similar to that in Hoare logic such as:
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If
– I(x) is the invariant of the current machine,
– Rn(x) is a sequence of assertions satisfying the property Rn+1(x)⇝ Rn(x), for all n ∈ N,
– P (x) ∧ I(x)⇒∃n ∈ N.Rn(x)

– R0(x)⇒Q(x)

then P (x)⇝ Q(x).

In the case of our machine, the sequence Rn(x) is defined by Rn(x)
def
= I(x) ∧ variant = n. In fact, we find

the Floyd-Hoare method and a way of showing that a machine converges to a stable state, if the variant decreases
it by observing convergent events. We will now define the verification conditions associated with the proof of
convergence.

The variant var : varexp(s, c, x) is assumed to be defined for the current machine. Two conditions are required:
– The variant var : varexp(s, c, x) is defined for any convergent event : AX(s, c), I(s, c, x), Ge(u, s, c, x) ⊢

varexp(s, c, x) ∈ N (NAT)
– The variant var : varexp(s, c, x) varies for any convergent event :

AX(s, c), I(s, c, x), Ge(u, s, c, x), BAP (u, s, c, x, x
′) ⊢ varexp(s, c, x′) < varexp(s, c, x) (VAR)

In the case of inclusion relationship, we have the condition verification
AX(s, c), I(s, c, x), Ge(u, s, c, x), BAP (u, s, c, x, x

′) ⊢ varexp(s, c, x′) ⊂ varexp(s, c, x) (VAR). To sum up,
we have two new verification conditions produced when there are convergent events and variants.

Proof Obligation e/var/NAT

AX(s, c), I(x), Ge(u, s, c, x) ⊢ varexp(s, c, x) ∈ N

Proof Obligation e/var/VAR1

AX(s, c), I(s, c, x), Ge(u, s, c, x), BAP (u, s, c, x, x
′) ⊢ varexp(s, c, x′) < varexp(s, c, x)

Proof Obligation e/var/VAR2

AX(s, c), I(s, c, x), Ge(u, s, c, x), BAP (u, s, c, x, x
′) ⊢ varexp(s, c, x′) ⊂ varexp(s, c, x)

We have devised a small example Fig. 1.1 which brings together the verification conditions with variant.

Example - 10 (Modelling an adder)

Consider two events evt2 and evt3 which decrease by one unit respectively the variables x and y initialised
respectively at x0 and y0 two natural integer values. These two events converge and help to reach a state where
the two variables x and y are zero, leaving only the event evt1 observable. Each time an event decreases x or y, it
increases z by one unit. Subject to an implicit assumption of weak global fairness over the events, we can guarantee
that z will be worth the sum x0 + y0. This example introduces the notion of a convergent event, and it remains to
comment on the status of event anticipated to give all the possible forms of events in a basic machine. Thus, the
event evt4 is a form of anticipation of what could be added later in this machine. In fact, we are going to present
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CONTEXT ADDC

CONSTANTS x0 y0 f0

AXIOMS
@axm1 x0 ∈ N
@axm2 y0 ∈ N
@axm3 f0 ∈ N × N → (N → N )
@axm4 ∀ a, b, c.

a ∈ N ∧ b ∈ N ∧ c ∈ N
∧ a ≤ b ∧ ∧ c ∈ a..b
⇒ f0(a 7→ b)(c) = c

end

MACHINE ADDM SEES ADDC

VARIABLES x y z ok

INVARIANTS
@inv1 x ∈ 0..x0
@inv2 y ∈ 0..y0
@inv4 ok ∈ BOOL
@inv3 z = x0− x+ y0− y
@inv5 ok = TRUE ⇒ z = x0 + y0

VARIANT { v | v ∈ N ∧ v ≤ x+ y}
y + x

EVENTS
EVENT INITIALISATION

then
@act1 x := x0
@act2 y := y0
@act3 z := 0
@act4 ok := FALSE

end

EVENT evt1
where

@grd1 x = 0 ∧ y = 0
@grd2 ok = FALSE

then
@act1 ok := TRUE

end

convergent EVENT evt2
where

@grd1 ok = FALSE
@grd2 x > 0

then
@act1 z := z + 1
@act2 x := x− 1

end

convergent EVENT evt3
where

@grd1 ok = FALSE
@grd2 y > 0

then
@act1 z := z + 1
@act2 y := y − 1

end

anticipated EVENT evt4
where

@grd1 x > 1 ∧ y > 1
then

@act1 x, y, z, ok :|
( z′ = x0− x′ + y0− y′

∧ x′ ∈ 0..x0 ∧ y′ ∈ 0..y0
∧ ( (x′ < x ∧ y′ = y)
∨ (y′ < y ∧ x′ = x))
∧ (ok′ = TRUE ⇒ z′ = x0 + y0))

end
end

Figure 1.1. Example of convergent and anticipated events

the refinement which will enable us to add and specify elements due to the basic machine. In this case, we could
imagine adding events which compute more quickly but which must respect and not disturb convergence.

1.4. Refinement of Event-B machines

The refinement relation is a mechanism which allows models (Event-B machines) to be developed in an incre-
mental and progressive way, starting from a very abstract model and, following a chain of refinements, reaching
a concrete expression of the system model. The sequence of machines is an exercise combining modelling and
proof. The main idea of refinement is to diffuse the proof effort and to allow a description on several levels of
abstraction of a system to be modelled. For example, a communication protocol can be modelled by a one-step
communication action, expressing only the expected service. Then we can give details of the more elementary
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actions which contribute to this service and then we can propose a model which makes it possible to locate the
actions. The modelling of the IEEE 1394 protocol (Abrial et al. 2003) is an example of development by refinement
of a distributed algorithm which is seen as a transformation of a forest into a tree using important properties of
a connected non-oriented graph. The chapter?? is devoted to the incremental development of distributed systems.
The diagram below describes the general framework of the use of refinement and the relationship EXTENDS
with CM which refines AM and E which is an extension of the initial domain D . We will explain some general
properties of refinement and then present the verification conditions for the refinement.

1.4.1. Elements on the refinement

The refinement relationship can refer to several aspects of the relationship between models of the same system.
To some extent, a model M1 refines a model M2, if M1 is more accurate than M2 and if it gives more information
about the system being modelled. This enrichment of the current model must not call into question what has al-
ready been acquired. The refinement of Event-B machines is a practice that makes it possible to make an abstract
model closer to the observed system. It proceeds by successive and increasingly precise observations, by detail-
ing elements in the concrete model. Refinement defines a series of levels of increasingly concrete observations.
The definition is based on the refinement of events and on the definition of of a glueing invariant establishing
the relationship between the variables of the abstract Event-B machine and the concrete concrete variables of the
concrete Event-B machine. Before defining Event-B refinement, we recall some elements linking the evolution of
B to Event-B . During the first B conference (Habrias 1996) organised by H. Habrias in 1996, J.-R.Abrial (Abrial
1996b) gave a demonstration of the transition from B to Event-B while preserving the tools implemented in Atelier-
B. A B machine contains operations and an Event-B machine contains events. Michael Leuschel (Leuschel 2021)
has written a detailed document outlining the differences between the B notation and the Event-B notation. Our
comparison does not take into account the ratings but the intention of the events. The difference between an opera-
tion and an event is important when modelling a system and must be used with care and precision. Jean-Raymond
Abrial distinguishes between two types of model: abstract machines and abstract systems. We take up the initial
definitions of event refinement and describe the various verification conditions that follow from them. We give the
initial definition of the refinement of two events expressed in the context of language B.

Definition 15 (refinement between two events (I))

Let x be the abstract variable (or list of variables) and I(s, c, x) the abstract invariant, y the concrete variable
(or list of variables) and J(s, c, x, y) the concrete invariant.

Let c be a concrete event observing the variable y and a an event observing the variable x and preserving
I(s, c, x).

Event c refines event a with respect to x, I(s, c, x), y and J(s, c, x, y), if

AX(s, c) ⊢ I(s, c, x) ∧ J(s, c, x, y)⇒ [c](¬[a](¬J(s, c, x, y)))

Definition 15 is exactly the same as the definition of the refinement of operations in the B language (Abrial
1996a), which are replaced by events. We remind the reader that an event is observed and an operation is called,
but that the refinement relation remains the same relation expressed by the use of wp-calculus. The two events are
defined by the following relationships:

a
def
=


any u where

G(u, s, c, x)
then

x : |ABAP (u, s, c, x, x′)
end

c
def
=



any v where
H(v, s, c, y)

witness
u :WP (u, s, c, v, y)
x′ :WV (v, s, c, y′, x′)

then
y : |CBAP (v, s, c, y, y′)

end
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The two events a and c are normalised by a relationship called BA(e)(s,c,x,x’), which simplifies the notations
used. The two events a and c are equivalent to events of the following normalized form:

– a is equivalent to begin x : |(∃u.G(u, s, c, x) ∧ABAP (u, s, c, x, x′)) end
– c is equivalent to begin y : |(∃v.H(v, s, c, y) ∧ CBAP (v, s, c, y, y′)) end

From this new formulation, we can deduce a new expression for the refinement of events. The witnesses u :
WP (u, s, c, v, y) (Witness Parameter) and x′ : WV (v, s, c, y′, x′) (Witness Variable) are effective indications for
the proof tool in solving an existential quantifier and will be useful at this point. We can conduct the following
reasoning.

Explanation (Characterisation of refinement)

(Hypothesis)

(1) AX(s, c) ⊢ I(s, c, x) ∧ J(s, c, x, y)⇒ [c](¬[a](¬J(s, c, x, y)))

equivalent to

( Definition of [a]: [a](¬J(s, c, x, y)) ≡ ∀x′.(∃u.G(u, s, c, x) ∧ABAP (u, s, c, x, x′))⇒¬J(s, c, x′, y)))

(2)AX(s, c) ⊢ I(s, c, x)∧J(s, c, x, y)⇒[c](¬(∀x′.(∃u.G(u, s, c, x)∧ABAP (u, s, c, x, x′))⇒¬J(s, c, x′, y))

equivalent to
(Transformation by simplification of logical connectives)

(3) AX(s, c) ⊢ I(s, c, x) ∧ J(s, c, x, y)⇒ [c](∃x′.(∃u.G(u, s, c, x) ∧ABAP (u, s, c, x, x′)) ∧ J(s, c, x′, y))

equivalent to
( Definition of [c])

(4) AX(s, c) ⊢ I(s, c, x) ∧ J(s, c, x, y) ⇒ (∀y′.(∃v.H(v, s, c, x) ∧ CBAP (v, s, c, y, y′)) ⇒
((∃x′.(∃u.G(u, s, c, x) ∧ABAP (u, s, c, x, x′)) ∧ J(s, c, x′, y′)))

equivalent to
(Transformation by quantifier elimination ∀)

(5)AX(s, c) ⊢ I(s, c, x)∧J(s, c, x, y)⇒(∃v.H(v, s, c, y)∧CBAP (v, s, c, y, y′))⇒((∃x′.(∃u.G(u, s, c, x)∧
ABAP (u, s, c, x, x′)) ∧ J(s, c, x′, y′)))

equivalent to
(Transformation by elimination of connector ∧)

(6)AX(s, c) ⊢ I(s, c, x)∧J(s, c, x, y)∧(∃v.H(v, s, c, y)∧CBAP (v, s, c, y, y′))⇒((∃x′.(∃u.G(u, s, c, x)∧
ABAP (u, s, c, x, x′))⇒ J(s, c, x′, y′)))

equivalent to
(Transformation by elimination of quantifier ∃)

(7) AX(s, c) ⊢ I(s, c, x) ∧ J(s, c, x, y) ∧ H(v, s, c, y) ∧ CBAP (v, s, c, y, y′) ⇒ ((∃x′.(∃u.G(u, s, c, x) ∧
ABAP (u, s, c, x, x′)) ∧ J(s, c, x′, y′)))

equivalent to
(Transformation by elimination of ∧)

(8)
1) AX(s, c) ⊢ I(s, c, x) ∧ J(s, c, x, y) ∧H(v, s, c, y) ∧ CBAP (v, s, c, y, y′)⇒ (((∃u.G(u, s, c, x))
2) AX(s, c) ⊢ I(s, c, x) ∧ J(s, c, x, y) ∧ H(v, s, c, x) ∧ CBAP (v, s, c, y, y′) ⇒

((∃x′.∃u.(ABAP (u, s, c, x, x′)) ∧ J(s, c, x′, y′)))
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That formal interlude leads to a very simple characterisation of refinement in the form of two conditions: guard
strengthening (GRD) and simulation (SIM).

Property 9 (refinement between events (II))

Let x be the abstract variable (or list of variables) and I(s, c, x) the abstract invariant, y the concrete variable
(or list of variables) and J(s, c, x, y) the concrete invariant.

Let c be a concrete event observing the variable y and a an event observing the variable x and preserving
I(s, c, x).

Event c refines event a with respect to x, I(s, c, x), y and J(s, c, x, y)

if, and only if,

1) (GRD) AX(s, c), I(s, c, x), J(s, c, x, y), H(v, s, c, x), CBAP (v, s, c, y, y′) ⊢ ∃u.G(u, s, c, x)

2) (SIM)
{
AX(s, c), I(s, c, x), J(s, c, x, y), H(v, s, c, x), CBAP (v, s, c, y, y′)
⊢ ∃x′.∃u.ABAP (u, s, c, x, x′) ∧ J(s, c, x′, y′)

The condition GRD indicates that in the refinement of a by c, the concrete guard (H(v, s, c, y)) is stronger than
the abstract guard ( ∃u.G(u, s, c, x) ) . In this case, the witness u u :WP (u, s, c, v, y) makes it possible to remove
the existential quantification and the condition GRD) is then transformed into the form:

– (GRD-WIT) AX(s, c),WP (u, s, c, v, y), I(s, c, x), J(s, c, x, y), H(v, s, c, x), CBAP (v, s, c, y, y′) ⊢
G(u, s, c, x)

– (SIM-WIT)


AX(s, c),
WP (u, s, c, v, y),WV (v, s, c, y′, x′),
I(s, c, x), J(s, c, x, y), H(v, s, c, x), CBAP (v, s, c, y, y′)
⊢
ABAP (u, s, c, x, x′) ∧ J(s, c, x′, y′)

The witnesses u (u :WP (u, s, c, v, y)) and x′ (x′ :WV (v, s, c, y′, x′)) must exist and it is therefore important
to add two new feasibility conditions, noted WFIS, which requires proving the existence of u and x’:

– (WFIS(u)) AX(s, c), I(s, c, x), J(s, c, x, y), H(v, s, c, x), CBAP (v, s, c, y, y′) ⊢ ∃u.WP (u, s, c, v, y′)

– (WFIS(x’)) AX(s, c), I(s, c, x), J(s, c, x, y), H(v, s, c, x), CBAP (v, s, c, y, y′) ⊢ ∃x′.WV (v, s, c, y′, x′)

We have omitted the verification condition corresponding to the initialization and it is simply obtained by the
same transformations as before. We summarize the list of proof obligations required for checking refinement of
Event-B models.

Property 10 (verification condition for refinement initialisation)

Let AInit(s, c, x′) and CInit(s, c, y′) be the initialization predicates for the abstract machine and the concrete
machine respectively. The refinement condition for initialization is an adaptation of the refinement relation:

(INIT) AX(s, c), CInit(s, c, y′) ⊢ ((∃x′.(AInit(s, c, x′) ∧ J(s, c, x′, y′)))

In order to simplify the conditions stated as sequents, we apply two very simple rules for calculating sequents.

Property 11 (simplification of sequents)
1) AX(s, c), H ⊢ P1 ⇒ P2 ⇒ . . .⇒ Pn ⇒Q is equivalent to AX(s, c), H, P1, P2, . . . , Pn ⊢ Q
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2) AX(s, c), H ⊢ P1 ∧ P2 ∧ . . . ∧ Pn is equivalent to
a) AX(s, c), H ⊢ P1

b) . . .
c) AX(s, c), H ⊢ Pn

By applying these two rules to our various verification conditions, we obtain the list of verification conditions
expressed by sequents. We give a list of the verification conditions to be produced and verified to ensure the refine-
ment of the abstract machine by the concrete machine. The two events are related by the refinement relationship.

Property 12 (Proof obligations for Event-B refinement)
– (INIT) AX(s, c), CInit(s, c, y′) ⊢ ∃x′.(AInit(s, c, x′) ∧ J(s, c, x′, y′))
– (GRD) AX(s, c), I(s, c, x), J(s, c, x, y), H(v, s, c, x), CBAP (v, s, c, y, y′) ⊢ ∃u.G(u, s, c, x)

– (GRD-WIT)

AX(s, c), I(s, c, x), J(s, c, x, y), H(v, s, c, x), CBAP (v, s, c, y, y′),WP (u, s, c, v, y)
⊢
G(u, s, c, x)

– (SIM)

AX(s, c), I(s, c, x), J(s, c, x, y), H(v, s, c, x), CBAP (v, s, c, y, y′)
⊢
∃x′.∃u.ABAP (u, s, c, x, x′) ∧ J(s, c, x′, y′)

– (SIM-WIT)


AX(s, c), I(s, c, x), J(s, c, x, y), H(v, s, c, x), CBAP (v, s, c, y, y′),
WP (u, s, c, v, y),WV (v, s, c, y, x′)
⊢
ABAP (u, s, c, x, x′)) ∧ J(s, c, x′, y′)

– (WFIS-P) AX(s, c) ⊢ I(s, c, x)∧J(s, c, x, y)∧H(v, s, c, x)∧CBAP (v, s, c, y, y′) ⊢ ∃u.WP (u, s, c, v, y)

– (WFIS-V)AX(s, c) ⊢ I(s, c, x)∧J(s, c, x, y)∧H(v, s, c, x)∧CBAP (v, s, c, y, y′) ⊢ ∃x′.WV (v, s, c, y, x′)

– (TH) AX(s, c) ⊢ I(s, c, x) ∧ J(s, c, x, y) ⊢ SAFE1(s, c, x, y)

Now, we describe the concept of refinement in the language itself and illustrate these conditions, to show their
role and impact on correct development by construction. From a methodological and proof-theoretical point of
view, the explicit witnesses are an effective help for the proof tool.

1.4.2. Refinement machines in Event-B

1.4.2.1. The structure of refinement machine

A basic abstract machine is described in figure 1.1 and does not include a reference to a more abstract machine.
The refines clause did not appear. We establish a refinement relationship between a machine denoted CM and
another machine denoted AM .
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MACHINE CM REFINES AM
SEES E
VARIABLES y
INVARIANTS
jnv1 : J1(s, c, x, y)
. . .
jnvr : Jr(s, c, x, y)

THEOREMS
th1 : SAFE1(s, c, x, y)
. . .
thn : SAFEn(s, c, x, y)

VARIANTS
var1 : varexp1(s, c, y)
. . .
vart : varexpt(s, c, y)

EVENTS
Event initialisation

begin
y : |(CInit(s, c, y′))

end
. . .
Event c

refines a
any v where
H(v, s, c, y)

witness
u :WP (u, s, c, v, y)
x′ :WV (v, s, c, y′, x′)
then
y : |CBAP (v, s, c, y, y′)

end
. . .

END

– The machine CM is a model describing a set of events E(CM )
modifying the y variable declared in the clause VARIABLES.

– A clause REFINES indicates that the CM machine refines a AM
machine and E(AM ) is the set of abstract events in AM .

– A particular event defines the initialisation of variable y according
to the relationship CInit(s, c, y′).

– The property “ Event c refines event a with respect to x, I(s, c, x), y
and J(s, c, x, y)” is denoted by the expression c refines a. Events a and c
are attached to two machines AM and CM ; the invariant attached to each
event is the invariant of its machine.

– A clause INVARIANTS describes the inductive invariant invariant
J(s, c, x, y) that this machine is assumed to respect provided that the as-
sociated verification conditions are shown to be valid in the theory in-
duced by the context E mentioned by the clause SEES. J(s, c, x, y) is the
gluing invariant linking the variable y to the variable x.

– The clause THEOREMS introduces the list of safety properties de-
rived in the theory. These properties relate to the variables y and x and
must be proved valid. It is possible to add theorems about sets and con-
stants; this can help the proofs to be carried out during the verification
process.

– To conclude this description, we would like to add that events can
carry very important information for the proof process, in particular for
proposing witnesses during event refinement. Furthermore, each event
has a status (ordinary, convergent, anticipated) which is important in the
production of verification conditions. The clause VARIANTS is linked to
events of convergent and anticipated status. The event c (concrete) explic-
itly refines an event a of the AM machine.

The diagram in figure 1.2 describes the organisation of Event-B machines and Event-B contexts according to
relationship SEES, EXTENDS and REFINES. We have defined the refinement relation for two events a and c
and we can propose an extension for machines. We denote refines the refinement relation defined in the previous
section for events and it is possible that several concret events in CM refine an abstract event a and it is possible
to have a concrete event e which is refining several abstract events and it will be a special case called merging of
abstract events.

Definition 16 (Event-B machine refinement)

The machine CM refines the machine AM , if any event c of CM refines an event a of AM :

∀c.c ∈ E(CM )⇒∃a.a ∈ E(AM ) ∧ c refines a.

Each machine has an event skip which does not modify the machine’s variables. A concrete event c can refine
an event skip whose effect is not to modify x in the abstract machine AM. We assume that the invariant of AM is
I(s, c, x) and that the initialisation of AM is AInit(s, c, x′). The philosophy of incremental modelling is based on
the need to support proofs, and requires modelling to be carried out in conjunction with proofs. The proof witnesses
are used to give properties of the parameter u and the variable x which have disappeared in the machine CM but
for which the user must give an expression according to the state of CM . In the diagram below, the schematisation
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I(x0)

x0

I(x)

x

I(x’)

x’

y0 y y’

ABSTRACT TRACE BA(a)(s,c,x,x’)
a

. . .

CONCRETE TRACE BA(c)(s,c,y,y’)
c . . .

J(x0,y0) J(x,y) J(x’,y’)

Figure 1.2. Refinement between two machines

of the refinement relationship shows what is gained. Indeed, I(s, c, x) is not reproved but is preserved insofar as
the event c does not invalidate I(s, s, x) at the next step.

We give a very simple example which shows what the refinement of two machines can express.

Example - 11 Example of clock

A machine M1 models hours or a machine M1 reports observations of hours and a machine M2 reports hours
and minutes. These machines are described in figure 1.3. This is a very special case of refinement called superpo-
sition and the proof is fairly straightforward. The event skip is explicitly added in our text but it is left implicit in
the Rodin archive.

We will now use the verification conditions set out in the property 12 to give the identifications of the verification
conditions as they appear in the Rodin tool.

1.4.3. Proof obligations for refinement

The verification conditions for refinement are identical to those we have already presented, with one important
difference: they use abstract elements such as the abstract invariant and the abstract event. Simplification of the
conditions is enhanced by reference to explicit witnesses. Finally, the gluing invariant J(s, c, x, y) states a rela-
tionship between the abstract variables x and the concrete variables y, and these two expressions in fact designate
a list of variables. It is possible to simplify the verification conditions when there is a variable z in the abstract
machine AM which is declared in the concrete machine CM in the form z. The translation must take the context
into account and we could use az for AM and cz. The link between the two variables would then be explained by
the relationship az = cz. The choice is to keep the expression z which is both an occurrence of an abstract variable
and an occurrence of a concrete variable. In the figure 1.3, h is an abstract variable of M1 and a concrete variable
in M2.

Example - 12 Abstract and concrete variables

Figure 1.4 gives an example of an abstract variable y which disappears in the concrete machine in the form z.
Note the role of the witness y’ which links y’ and z’ in the initialisation of the machine M2.

1.4.3.1. Proof obligations for INITIALISATION
Initialization conditions accompany and complete the diagram Fig.1.2 and two verification conditions are de-

rived. We make assumptions about the definition of CInit(s, c, y′) which can have various decomposed forms.
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CONTEXT C

CONSTANTS H M

AXIOMS
@axm1 H = 0..23
@axm2 M = 0..59

end

MACHINE M1 SEES C

VARIABLES h

INVARIANTS
@inv1 h ∈ H

EVENTS
EVENT INITIALISATION

then
@act1 h : ∈ H

end

EVENT h1
where

@grd1 h < 23
then

@act1 h := h+ 1
end

EVENT h2
where

@grd1 h = 23
then

@act1 h := 0
end

end

MACHINE M2 REFINES M1 SEES C

VARIABLES h m

INVARIANTS
@inv1 m ∈ M
theorem @inv2 h ∈ H

EVENTS
EVENT INITIALISATION

then
@act1 h : ∈ H
@act2 m : ∈ M

end

EVENT h1m1
where

@grd1 h < 23
@grd2 m < 59

then
@act2 m := m+ 1

end

EVENT h1m2 REFINES h1
where

@grd1 h < 23
@grd2 m = 59

then
@act1 h := h+ 1
@act2 m := 0

end

EVENT h2m1 REFINES h2
where

@grd1 h = 23
@grd2 m = 59

then
@act1 h := 0
@act2 m := 0

end

EVENT h2m2
where

@grd1 h = 23
@grd2 m < 59

then
@act1 m := m+ 1

end
end

Figure 1.3. Raffinement de machines des heures aux minutes
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MACHINE M1

VARIABLES x y

INVARIANTS
@inv1 x+ y = 100

EVENTS
EVENT INITIALISATION

then
@act1 x, y :| (x′ + y′ = 100)

end

EVENT evt1
then

@act1 x, y ∈ | (x′ + y′ = 100 ∧ x′ = x+ 1)
end

EVENT evt2
then

@act1 x, y :| (x′ + y′ = 100 ∧ y′ = y − 1
end

end

MACHINE M1

VARIABLES x y

INVARIANTS
@inv1 x+ y = 100

EVENTS
EVENT INITIALISATION

then
@act1 x, y :| (x′ + y′ = 100)

end

EVENT evt1
then

@act1 x, y ∈ | (x′ + y′ = 100 ∧ x′ = x+ 1)
end

EVENT evt2
then

@act1 x, y :| (x′ + y′ = 100 ∧ y′ = y − 1
end

end

Figure 1.4. Abstract and concrete variable

J(s, c, x, y) is a conjunction of properties invi : Ji(s, c, x, y) and a witness x′ :WV (s, c, y′, x′) is associated with
this event. This simplifies the expression of the condition.

Proof Obligation INITIALISATION/jnvi/INV

AX(s, c), CInit(s, c, y′),WV (s, c, y′, x′) ⊢ AInit(s, c, x′) ∧ Ji(s, c, x′, y′)

A second condition is the same as for the basic case and consists in showing that the initial state exists.

Proof Obligation INITIALISATION/acti/WF

AX(s, c) ⊢WD(CIniti(s, c, yi)

Here again we can see the role of the witness, who really helps the work of the proof assistant and which is
stated while modelling the system.

1.4.3.2. Proof obligations for refinement e/I/INV et e/I/FIS

To keep the rules as simple as possible, we assume that that there are two witnesses:
– a witness for u denoted WP(u,s,c,v,y)
– a witness for x′ denoted WV(s,c,y’,x’)

Existential quantifications are replaced by witnesses and allow us to derive verification conditions for the re-
finement with a naming specific to Rodin.
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The abstract guard G(s, c, x) is labelled grd : G(s, c, x) and note that the concrete guard H(s, c, y) under the
conditions of the invariants I(s, c, x)) and J(s, c, x, y) implies (and triggers) the abstract guard.

Proof Obligation c/gr/GRD

AX(s, c), I(s, c, x), J(s, c, x, y), H(v, s, c, x),WP (u, s, c, v, y) ⊢ G(u, s, c, x)

The second verification condition also uses the second witness. Our starting point is the following property:(
AX(s, c), I(s, c, x), J(s, c, x, y),
H(v, s, c, x), CBAP (v, s, c, y, y′)

)
⊢ ∃x′.(∃u.ABAP (u, s, c, x, x′)) ∧ J(s, c, x′, y′)

which expresses both the preservation of the J invariant and the simulation of the abstract action by the con-
crete action. If we use the witnesses WP (u, s, c, v, y) and WV (v, s, c, y′, x′), we obtain the following simpler
expression without existential quantification::AX(s, c), I(s, c, x), J(s, c, x, y),

H(v, s, c, x), CBAP (v, s, c, y, y′),
WP (u, s, c, v, y),WV (v, s, c, y′, x′)

 ⊢ ABAP (u, s, c, x, x′)) ∧ J(s, c, x′, y′)

Then we use the conjunction property by stating two conditions, one for preserving the invariant and the other
for simulating it. We assume that the invariant J is labelled inv (inv : J(s, c, x, y)) and that the action correspond-
ing to event c is labelled act (act : x : |ABAP (u, s, c, x, x′)).

Proof Obligation c/inv/INV

AX(s, c),
I(s, c, x), J(s, c, x, y),
H(v, s, c, x), CBAP (v, s, c, y, y′),
WP (u, s, c, v, y),WV (v, s, c, y′, x′)

⊢ J(s, c, x′, y′)

Proof Obligation c/act/SIM

AX(s, c),
I(s, c, x), J(s, c, x, y),
H(v, s, c, x), CBAP (v, s, c, y, y′),
WP (u, s, c, v, y),WV (v, s, c, y′, x′)

⊢ ABAP (u, s, c, x, x′)

The simplification provided by the witnesses must be guaranteed and it must be shown that the conditions
defined by the axioms and the two invariants guarantee the existence of the two witnesses. To do this, it is sufficient
to prove that witness u and witness x′ exist.

Proof Obligation c/u/WFIS

AX(s, c), I(s, c, x), J(s, c, x, y) ∧H(v, s, c, x) ⊢ ∃u.WP (u, s, c, v, y)
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Proof Obligation c/x’/WFIS

AX(s, c), I(s, c, x), J(s, c, x, y), H(v, s, c, x) ∧ CBAP (v, s, c, y, y′) ⊢ ∃x′.WV (v, s, c, y′, x′)

We have detailed the verification conditions that are produced by the Rodin platform and that must be proven
by the proof tool. In fact, it is important to have in mind how the proof obligations are generated and what they do
mean.

1.4.3.3. Additional proof obligations

The verification conditions are completed by the conditions associated with the events convergent or antici-
pated. Simply add the invariant J(s, c, s, y) and we assume that H(v, s, c, y) is the guard of the concrete event
c.

Proof Obligation c/var/NAT

AX(s, c), I(s, c, x), J(s, c, x, y), H(v, s, c, y) ⊢ varexp(s, c, y) ∈ N

Proof Obligation c/var/VAR

AX(s, c), I(s, c, x), J(s, c, x, y), H(v, s, c, y), BAP (v, s, c, y, y′) ⊢ varexp(s, c, y′) < varexp(s, c, y)

Finally, there is one last condition associated with the proof of theorems. th is the label of the theorem
SAFE(s, c, x, y).

Proof Obligation th/TH

AX(s, c), I(s, c, x), J(s, c, x, y) ⊢ SAFE(s, c, x, y)

The verification conditions are expressed as sequents and are subjected in the Rodin platform to the various
proof tools available, sometimes with decisive human interaction. These additional verification conditions are nec-
essary to play a role in establishing the observation of a convergent (or helpful) event. These events are reminiscent
of the help functions in Pnueli (Manna and Pnueli 1984) or the critical actions of Méry(Méry 1986). Their role is
clearer when we consider Pnueli’s induction rules or Lamport’s rules for TLA, which is even more complete with
fairness hypotheses. We can also mention the rule of progression by observation of a given event in the case of
UNITY (Chandy and Misra 1988). For anticipated events, the idea is to develop progressively but to be able to
add events across the board that won’t call everything into question. In fact, when a machine is defined either by
refinement or by creation, the model frame fixes the variables which cannot be modified subsequently, since the
events which will be added in the next refinement must not invalidate the invariant of the refined machine, and in
the case of new events, they must refine skip, i.e. not modify the variables of the refined machine. To a certain
extent, it is important that all the events are introduced at the current level, but we don’t know them all and the
idea is to use an anticipated event which is still imprecise but which maintains the current invariant. This is the
case when we are going to develop a sequential algorithm from a pre.post specification and it is quite simple to
anticipate a calculation loop before delivering the result satisfying the postcondition. In this way, the anticipated
event makes it possible to express that something is happening before the final computation event is observed.
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1.4.3.4. Fusion of events

In the refinement of a machine AM by CM , the definition 16 (page 26) is reduced to this expression ∀c.c ∈
E(CM ) ⇒ ∃a.a ∈ E(AM ).e refines a. Every concrete event c in CM corresponds ,to an abstract event a and is
linked by the relation refines and in a way, we could understand that the number of abstract events is less than the
number of concrete events. This is not the case and it is possible to reduce the number of events per refinement
by using event merging with very strong assumptions. Thus, by merging two abstract events a1 and a2, we obtain
a concrete concrete event c(a1+ a2) which refines each of the two events, but the condition is that the action of
two abstract be syntactically identical. The condition is strong but allows us to merge and simplify the concrete
models. Merging two events is an important mechanism for completing the Event-B refinement. This possibility
requires strong conditions on the actions, which must be identical for all three events. As shown in the diagram in
figure 1.5, the guards G1 and G2 are reinforced by the guard H and the verification condition is very simply the
expression of this reinforcement.

Proof Obligation c/MRG

AX(s, c), I(s, c, x), H(v, s, c, y) ⊢ G1(s, c, x) ∨G2(s, c, x)

The conditions for applying this merging are very restrictive, but we will give an example of its application. In
a case study, we used this merge to reduce a set of events to a single event. As a result, it can be seen that during
refinement either the number of events is increased or reduced, depending on the case.

Event ae2
any u where
G2(u, s, c, x)

then
x : |ABAP (u, s, c, x, x′)

end

Event ae1
any u where
G1(u, s, c, x)

then
x : |ABAP (u, s, c, x, x′)

end

Event c
refines ae1, ae2
any u where
H(u, s, c, u)

then
x : |ABAP (u, s, c, x, x′)

end

refines refines

Figure 1.5. Fusion of two events

CONTEXT MRG0

CONSTANTS a b

AXIOMS
@axm1 a ∈ Z ∧ b ∈ Z

END

We illustrate this rule by calculating the maximum of two
numbers. The context MRG0 defines the integer values
a and b, and we will ensure that sup contains the larger
of the two values. The larger of the two values is the one
we’re looking for.
This machine compares two values and assigns the value
of the maximum to sup. The variable ok controls this ma-
chine. When ok is TRUE, sup contains the maximum.
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MACHINE MRG1 SEES MRG0

VARIABLES i j ok sup

INVARIANTS
@inv1 i ∈ Z ∧ j ∈ Z ∧ ok ∈ BOOL ∧ sup ∈ Z
@inv2 i = a ∧ j = b
@inv3 ok = TRUE ⇒ sup ≥ i ∧ sup ≥ j ∧ sup ∈ { a, b}

EVENTS
EVENT INITIALISATION

then
@act1 i := a
@act2 j := b
@act3 ok := FALSE
@act4 sup : ∈ Z

end

EVENT e1
where

@grd1 i < j
@grd2 ok = FALSE

then
@act1 sup := j
@act2 ok := TRUE

end

EVENT e2
where

@grd1 i ≥ j
@grd2 ok = FALSE

then
@act1 sup := i
@act2 ok := TRUE

end
END

Before applying the MRG rule, we must construct a refinement of this machine that satisfies the application
conditions. This means refining e1 and e2 so that the action is identical for each event. The MRG2 machine refines
the MRG1 machine, and the actions of the two events are identical.

We can apply the rule for merging the two events and construct an event merge(e1;e2) which corresponds to
a conditional instruction. Figure 1.6 illustrates the application of this rule and gives a view of the events. The
proof is fairly easy, since the H condition reduces to TRUE.
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MACHINE MRG2
REFINES MRG1
SEES MRG0

VARIABLES i j ok sup

EVENTS
EVENT INITIALISATION

then
@act1 i := a
@act2 j := b
@act3 ok := FALSE
@act4 sup : ∈ Z

end

EVENT e1 REFINES e1
where

@grd1 i < j
@grd2 ok = FALSE

then
@act1 sup, ok :| (

(ok = FALSE
∧ (i < j ⇒ sup′ = j)
∧ (i ≥ j ⇒ sup′ = i)
∧ ok′ = TRUE))

end

EVENT e2 REFINES e2
where

@grd1 i ≥ j
@grd2 ok = FALSE

then
@act1 sup, ok :|

(ok = FALSE
∧ (i < j ⇒ sup′ = j)
∧ (i ≥ j ⇒ sup′ = i)
∧ ok′ = TRUE)

end
end

MACHINE MRG3 REFINES MRG2
SEES MRG0

VARIABLES i j ok sup

INVARIANTS
theorem @inv1
ok = TRUE ⇒ sup ≥ i ∧ sup ≥ j ∧ sup ∈ { a, b}
theorem @inv2 i = a ∧ j = b

EVENTS
EVENT INITIALISATION

then
@act1 i := a
@act2 j := b
@act3 ok := FALSE
@act4 sup : ∈ Z

end

EVENT merge(e1, e2) REFINES e1 e2
where

@grd2 ok = FALSE
then

@act1 sup, ok :| (
ok = FALSE ∧
(i < j ⇒ sup′ = j) ∧
(i ≥ j ⇒ sup′ = i) ∧
ok′ = TRUE)

end
end

This merging rule will be used in the chapter ?? when developing sequential algorithms. Refinement is an
operation that allows new events to be introduced as well as reinforcing existing events, and in the case of this rule,
it allows the number of events to be reduced.

1.5. Overview of the Event-B Modelling Language

We take up the elements of the Event-B language by developing a simplified abacus system, in order to
illustrate the modelling language, refinement, ordinary, anticipated and convergent events, witnesses, invariants
and safety properties. Other examples will be developed in the following chapters and will illustrate the modelling
possibilities of Event-B .

1.5.1. Playing with Event-B

We are dealing with a simple example to illustrate the various elements we have already presented, but it is
clear that the other chapters will be illustrations of the use of the Event-B language with the Rodin platform or
the Atelier-B platform. In fact, we have an idea of a simple system for calculating the addition function, and this
method is the one that the school teacher taught, when the author was 6 years old and discovering numbers and



The Modelling Language Event-B 35

Event e1 REFINES e1
WHEN
grd1 : i < j
grd2 : ok = FALSE

THEN

act1 : sup, ok :|


ok = FALSE ∧
(i < j⇒ sup′ = j)
∧
(i ≥ j⇒ sup′ = i)
∧
ok′ = TRUE


END

Event e2 REFINES e2
WHEN
grd1 : i ≥ j
grd2 : ok = FALSE

THEN

act1 : sup, ok :|


ok = FALSE ∧
(i < j⇒ sup′ = j)
∧
(i ≥ j⇒ sup′ = i) ∧
ok′ = TRUE


END

Event merge(e1,e2)
REFINES e1, e2
WHEN
grd2 : ok = FALSE

THEN

act1 : sup, ok :|


ok = FALSE ∧
(i < j⇒ sup′ = j)
∧
(i ≥ j⇒ sup′ = i)
∧
ok′ = TRUE


END

refines refines

Figure 1.6. Fusion of two events e1 and e2

calculations. Figure 1.7 shows contexts and machines used to describe the rules for using the abacus. The abacus
can be used either by moving balls from top to bottom in one move (rule 1), or by moving them one after the other
(rule 2).The abacus uses potential energy, as the balls will descend very simply once they have been released.
Initialization is done quite simply by inverting the top and bottom. Formally, the problem to solve can be defined
as follow using a contract-based notation.

variables x, y, r, ok

requires


x0 ∈ N
y0 ∈ N
r0 ∈ Z
ok0 ∈ BOOL

ensures
(
rf = x0 + y0
okf = TRUE

The contract expresses a relationship between the initial
values of x and y, denoted x0 and y0, and the final value
of r denoted rf . This relationship simply expresses that
the final value of the variable r denoted rf is the sum
x0 + y0. Obviously, we use the mathematical operator +
and we aim to construct, by refinement, a set of events
modelling the movements of the abacus and calculating
the operator +.
Two contexts are mentioned in the figure 1.7 namely C0
and C1. C0 is the context for defining the two integer
values a and b used for the computation. They are the
inputs for short.
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C0

C1

M1

M2

M11

M22

M111

M222

Rule 1

Rule 2

sees

extends

refines

refines

refines

refines refines

Figure 1.7. Organisation of refinements for ABACUS

a and b are two natural numbers and are
defined in context C0. In context C1, we
define balls of the abacus and the two sets
of balls representing sets with cardinalities
corresponding to a and b.

CONTEXT C0

CONSTANTS a b

AXIOMS
@axm1 : a ∈ N
@axm2 : b ∈ N

END

CONTEXT C1 EXTENDS C0

sets B

CONSTANTS seta setb ball

AXIOMS
@axm1 : B ̸= ∅ ∧ finite(B)
@axm5 : seta ⊆ B ∧ card(seta) = a
@axm2 : setb ⊆ B ∧ card(setb) = b
@axm3 : seta ∩ setb = ∅
theorem @axm4 : finite(seta) ∧ finite(setb)
@axm6 : ball ∈ B
@axm7 : ∀ u, v .

u ⊆ B ∧ v ∈ B ∧ v /∈ u
⇒
card(u { v} ) = card(u)− 1

END

The aim of this modelling is to show the link between the mathematical function + and its calculation using
two calculation rules, using variable refinement and abstraction. The representation of a number n on the abacus is
a set of n balls. Figure 1.7 gives contexts and machines modelling the two rules, and we are detailing the different
components. Our abacus has two rows of balls.The first row is used to calculate addition by moving the balls
from top to bottom.The second row is a control structure and has a single ball that is at the top at the start of the
calculation and at the bottom when the calculation is complete. The vertical positioning of the rows eliminates the
need for an energy source, and the calculation rules are straightforward: the balls at the top of the first row move to
the bottom of the second row. Figure 1.8 summrizes the Event-B components that we have produced for modelling
the two rules according to the figure 1.7.

1.5.1.1. Rule 1

Rule 1 allows the balls to be moved from the top to the bottom in a single move. This means that a 2+3 addition
is modelled as follows: three balls are placed at the bottom and two at the top of the first row, and one ball is placed
at the top of the second row. The calculation is observed when the two balls are released, just like the first ball.
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Components Explanations of components

CO , C1 The two contexts define the two natural numbers a and b to use for the addition. The set of
balls B is defined and two sets seta and setb are defined for representing respectively a and b:
a (respectively b) is denoting the cardinality of seta (respectively setb).

M1 The event calling_a_function is modelling the postcondition and uses two variables r and ok
where r gets the result of the addition and ok gets the value TRUE to mean that the variable r
is updated. The event computing is anticipating the detailed intermediate computations which
are detailed in the refinement M11.

M11 Two new variables setr setok are introduced and model numbers or booleans using balls. When
cardinality of setr is n, it means that setr represents n. An event obs refines the event call-
ing_a_function and simulates the computation by merging the balls into setr.

M111 The refnement M111 hides the variables r and ok and it keeps visible the variables with balls.
The event obs is observing the rule 1 and computes the addition s the union of balls.

M2 In the machine M1, the two intermediate variables x and y containing a and b are not introduced
and model the state of the top and bottom of the first row. The event calling2 refines the event
calling_a_function and the new event step2 is refining the event computing; it simulates an
iteration. Events are simulating the addition function.

M22 The variables setx, sety, setr and setok are introduced to represent variables containing integers
or booleans. Events are enriched to handle the new variables.

M222 The variables r, ok, x and y are hidden and the events are modified accordingly. The rule 2 is
simulated by the event step3.

Figure 1.8. Sketch for contexts, machines and refinements for abacus

Rule 1

obs−→

The event obs triggers the mechanism for
passing the two top balls onto the three bot-
tom balls. The result is obtained by counting
the number of lower balls. We could use the
gaseous method, which would lead us to ob-
serve that the lower balls rise. Whatever pro-
cess is used, it is completed when the right
ball is at the bottom (resp. at the top). Rule 1
for using the abacus is to move the balls from
the top to the bottom and to update an indi-
cator showing that the rule has been applied
once and only this rule is applied.

The machine M1 with the context C0 models the contract associated with the addition function. The event
calling_a_function models the relationship between the values before and after this event. Then the machine M11
refines M1 by introducing a modelling of the variables by sets of balls setr and setok initially containing a number
of balls corresponding to the value of the variables setr and setok. The refinement is then continued by hiding the
variables r and ok and the event obs models the observation of the movement of the balls from top to bottom in
one-shot.
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The machine M1 is simply expressing the contract
as an event calling_a_function. After observing
the event calling_a_function, the variable ok is set
to TRUE and r is set to a+ b. The event computing
is anticipating a hidden computation process. The
machine M1 is refined into a refinement machine
M1. Two new variables setr and setok are intro-
duced and the invariant expresses a relationship
between ok,r, setr and setok.

MACHINE M1 SEES C1

VARIABLES r ok

INVARIANTS
@inv1 r ∈ Z
@inv2 ok ∈ BOOL
@inv3 ok = TRUE ⇒ r = a+ b

EVENTS
EVENT INITIALISATION

then
@act3 : ok := FALSE
@act4 : r : ∈ Z

end

EVENT calling_a_function
where

@grd1 : ok = FALSE
then

@act1 : ok := TRUE
@act2 : r := a+ b

end

anticipated EVENT computing
then

@act1 : r, ok :|
(ok′ ∈ BOOL ∧ r′ ∈ Z
∧ (ok′ = TRUE ⇒ r′ = a+ b))

end
END

The refinement machine M11 was used to introduce
two new variables to model the ranks of the abacus.
It is an intermediate machine and is refined into a
refinement machine M111 where the variables ok
and r are hidden. The event obs models the moving
of the balls from the top to the bottom in a single
move. This machine illustrates the use of witnesses
in the INITIALISATION event. The event obs is
simulating the rule 1.

MACHINE M11 REFINES M1
SEES C1
VARIABLES r ok setr setok
INVARIANTS
@inv1 setr ⊆ B ∧ setok ⊆ B
@inv5 setok = { ball}

⇒ setr = seta ∪ setb
@inv2 setok = { ball} ⇒ ok = TRUE
@inv3 ok = TRUE ⇒ setok = { ball}
@inv6 card(setr) = r
@inv7 setok ⊆ { ball}

EVENTS
EVENT INITIALISATION

then
@act4 r, setr, ok, setok :|

( r′ = 0 ∧ ok′ = FALSE
∧ setok′ = ∅ ∧ setr′ = ∅ )

end

EVENT obs
REFINES calling_a_function

where
@grd1 ok = FALSE
@grd2 setok = ∅

then
@act1 ok := TRUE
@act2 r := a+ b
@act3 setr := seta ∪ setb
@act4 setok := { ball}

end

anticipated EVENT computing
REFINES computing

then
@act1 r, ok, setr, setok :|

(ok′ ∈ BOOL ∧ r′ ∈ Z
∧ setok′ ⊆ { ball}
∧ (setok′ = { ball}
⇒ ok′ = TRUE
∧ setr′ = seta ∪ setb
∧ r′ = a+ b)
∧ (ok′ = TRUE
⇒ r′ = a+ b
∧ setok′ = { ball}
∧ setr′ = seta ∪ setb)
∧ card(setr′) = r′)

end
END
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MACHINE M111 REFINES M11 SEES C1

VARIABLES setr setok

INVARIANTS
theorem @inv1 setok = { ball} ⇒ setr = seta ∪ setb

EVENTS
EVENT INITIALISATION
with
@r′ r′ = 0
@ok′ ok′ = FALSE

then
@act4 setr, setok :| ( setok′ = ∅ ∧

setr′ = ∅ )
end

EVENT obs REFINES obs
where

@grd2 setok = ∅
then

@act3 setr := seta ∪ setb
@act4 setok := { ball}

end

anticipated EVENT computing REFINES computing
with
@r′ r′ = card(setr′)
@ok′ (setok′ = { ball} ⇒ ok′ = TRUE)

∧ (setok′ = ∅ ⇒ ok′ = FALSE)
then

@act1 setr, setok :| (setok′ ⊆ { ball} ∧ (setok′ = { ball} ⇒ setr′ = seta ∪ setb) )
end

END

Rule 1 calculates the addition in one move and the refinement expresses that the + function is calculated ac-
cording to this rule application.

The computing event is undoubtedly one that may seem like too much, and it could disappear at this level of
refinement. In fact, it models the fact that there may be non-visible calculations that prepare the final result. In
fact, it anticipates intermediate calculations which are not visible but which could exist. In all cases, the invariants
remain verified.

1.5.1.2. Rule 2

Rule 2 allows the balls to be moved from the top to the bottom, but one ball at a time. So, a 2 + 3 addition is
modelled as follows: three balls are placed at the bottom and two at the top of the first row, and one ball is placed
at the top of the second row. The calculation is observed when the first ball is released, then the second ball is
released and finally the single ball in the second row is released.
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step4−→ step4−→ calling4−→

The M1 machine is refined by the M2 machine and in-
troduces two new variables, x and y, which allow an it-
eration controlled by the value of y to be implemented.
A new event step2 defines the computation or iteration
step. The invariant x + y = a + b expresses the main-
tenance of the number of balls. The variant y is used to
express the termination of the process. Then the machine
M22 introduces the balls and the event step3 observes
both the movement of a ball and the updating of the vari-
ables x and y. Then a final refinement M222 hides the
variables x,y and ok and we find the event step3. We re-
cover the event step4, which models the movement of
one ball at a time.

MACHINE M2 REFINES M1 SEES C0
VARIABLES x y r ok
INVARIANTS
@inv1 x ∈ N
@inv2 y ∈ N
@inv3 x+ y = a+ b
theorem @inv4 ok = TRUE ⇒ r = a+ b
VARIANT y
EVENTS
EVENT INITIALISATION

then
@act1 ok := FALSE
@act2 r : ∈ Z
@act3 x := a
@act4 y := b

end
EVENT calling2 REFINES computing

where
@grd1 ok = FALSE
@grd2 y = 0

then
@act1 ok := TRUE
@act2 r := x

end
convergent EVENT step2 REFINES computing

where
@grd1 ok = FALSE
@grd2 y ̸= 0

then
@act1 x := x+ 1
@act2 y := y − 1

end
end

The refinement introduces two new variables
x and y which are used to introduce the iter-
ative process starting with y containing b and
ending when y contains 0. The property of this
process is that there is only one event which
observes the decay of y and which is a con-
vergent event.
The ok variable is used to express that the cal-
culation process is complete when the value
of y is 0. The end of the process is detected by
the value of y and convergence is expressed
by the variant y which decreases strictly when
the event step2 is observed.
The proofs are simple and the property x +
y = a+ b is inductive.
The refinement of M2 into M22 amounts to
materialising the iterative process with balls
and the M22 machine introduces four new
variables setr, setok like M22 and setx and
sety for the two sides of the abacus. The
preservation of x + y = a + b is ensured by
the fact that no one can add or remove balls.
The question arises of adding demonic events
whose role is to allow balls to be lost or added:
setx ∪ sety = seta ∪ setb.
A final refinement of M222 consists in hiding
the variables r,x,y,ok, thus obtaining an itera-
tive process which can only apply rule 2.
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MACHINE M22 REFINES M2 SEES C1

VARIABLES r ok setx sety x y setr setok

INVARIANTS
@inv1 setx ⊆ B
@inv2 sety ⊆ B
@inv3 setr ⊆ B ∧ setok ⊆ B ∧ setok ⊆ { ball}
@inv4 setx ∩ sety = ∅ ∧ setx ∪ sety = seta ∪ setb
@inv5 setok = { ball} ⇒ sety = ∅ ∧ setr = seta ∪ setb
@inv6 (setok = ∅ ⇒ ok = FALSE) ∧ ( ok = FALSE ⇒ setok = ∅ )
@inv7 (setok = { ball} ⇒ ok = TRUE) ∧ ( ok = TRUE ⇒ setok = { ball} )
@inv8 x = card(setx) ∧ y = card(sety)

EVENTS
EVENT INITIALISATION

then
@act1 ok := FALSE
@act2 r : ∈ Z
@act3 x, y, setx, sety, setr, setok :|
(setok′ = ∅ ∧ setr′ ⊆ B ∧ setx′ = seta ∧ sety′ = setb ∧ x′ = a ∧ y′ = b)

end

EVENT calling3 REFINES calling2
where

@grd1 ok = FALSE
@grd2 setok = ∅
@grd3 sety = ∅

then
@act1 ok := TRUE
@act2 r := x
@act3 setr := setx
@act4 setok := { ball}

end

EVENT step3 REFINES step2
any z
where

@grd1 ok = FALSE
@grd2 sety ̸= ∅
@grd3 z ∈ sety
@grd4 setok = ∅
@grd5 y ̸= 0

then
@act1 setx := setx ∪ { z}
@act2 sety := sety \ { z}
@act3 x := x+ 1
@act4 y := y − 1

end
end
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MACHINE M222 REFINES M22 SEES C1

VARIABLES setx sety setr setok

EVENTS
EVENT INITIALISATION
with
@x′ x′ = a
@y′ y′ = b

then
@act7 setx, sety, setr, setok :|

(setok′ = ∅ ∧ setr′ ⊆ B ∧ setx′ = seta ∧ sety′ = setb)
end

EVENT calling3 REFINES calling3
where

@grd3 setok = ∅
@grd4 sety = ∅

then
@act3 setr := setx
@act4 setok := { ball}

end

EVENT step3 REFINES step3
any z
where

@grd2 sety ̸= ∅
@grd3 z ∈ sety
@grd4 setok = ∅

then
@act1 setx := setx ∪ { z}
@act2 sety := sety \ { z}

end
end

Rule 2 allows the addition to be calculated in several moves and the refinement expresses that the + function is
calculated according to this application of the rule. This is an iteration that is completed when there is a ball in the
setok variable.

We have used Event-B modelling to describe the rules for using the abacus to calculate addition, and we have
also verified these rules against the process of using the abacus. This example shows how Event-B can be used to
describe reactive systems incrementally.

1.5.2. Concluding Comments

We have presented elements of the Event-B language, which is based on B but offers a simple way to express
transitions. A machine in Event-B describes the state of an observed system by listing variables and asserting an
invariant. It also allows for changes in variables to be expressed by a finite list of events. The machine is checked
by verifying a list of verification conditions expressing the preservation of the invariant by the events. The data
description uses set theory and the predicate calculus of the B language (Abrial 1996a) with some differences
(Leuschel 2021) . This method has been developed from the classical B (Abrial 1996a) method and proposes a
general framework for developing reactive systems, using a progressive approach to model design by refinement.
Event-B was developed from the ground up based on the foundational work of Jean-Raymond Abrial’s presen-
tation (Abrial 1996b) at the inaugural conference (Habrias 1996) and the contributions of Ralph Back and Kurki
Suonio (Back and Kurki-Suonio 1989). The choices made have enabled us to use the Atelier-B tool to develop the
first models Event-B . Finally, it should be noted that the refinement of Event-B machines is an original element
of this approach implemented in the Rodin platform. The Event-B language is designed for developing models



The Modelling Language Event-B 43

of reactive systems using an incremental and progressive approach guided by a set of techniques such as proof
animation and simulation supported by Rodin. However, there is still a learning phase to use this language and the
following chapters will propose such techniques.
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axiomatics for S, 5
axioms, 4
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Fixed-point characterization of invariants and safety

properties, 8
flexible variable, 2, 3
functions, 4
GRD, 24, 25
GRD-WIT, 24, 25
induction principle, 7
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INITIALISATION, 17
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