
10

Event B

Event B [ABR 10a, CAN 07a] is a modeling language which can describe
state-based models and required safety properties. The main objective is to
provide a technique for incremental and proof-based development of the
reactive systems. It integrates set-theoretical notations and a first-order
predicate calculus, models called machines; it includes the concept of
refinement expressing the simulation of one machine by another machine. An
Event B machine models a reactive system, i.e. a system driven by its
environment and its stimuli. An important property of these machines is that
its events preserve the invariant properties defining a set of reachable states.
The Event B method has been developed from the classical B
method [ABR 96] and it offers a general framework for developing the
correct construction systems by using an incremental approach for designing
the models by refinement. Refinement [BAC 79, DIJ 76, BAC 98, BAC 89] is
a relationship relating two models such that one model is simulating the other
model. Refinement is also called refinement and preserves properties of the AQ1
abstract model in the refined or concrete model. When an abstract model is
refined by a concrete model, the concrete model simulates the abstract model
and any safety property of the abstract model is also a safety property of the
concrete model. In particular, the concrete model preserves the invariant
properties of the abstract model. Event B aims to express models of systems
characterized by invariants and by a list of safety properties. We can consider
liveness properties as in UNITY [CHA 88] or TLA+ [LAM 02, LAM 94] but
in a restricted way.

Chapter written by Dominique MÉRY and Neeraj KUMAR SINGH.

2 Formal Methods Applied to Complex Systems 2

10.1. Introduction

This chapter is organized into eight sections. Section 10.2 introduces results
on the modeling and verification of systems using transition systems. The goal
is to provide the basic fundamental and conceptual theories, which support
Event B approach. In particular, we explain how invariant properties and safety
properties are defined in the framework of a transition system, which may
model a program, an algorithm or a distributed system. Section 10.3 details the
Event B language and related concepts such as events, contexts, machines and
refinement. We give an explanation of proof obligations (POs) generated for
checking the consistency of the Event B structure. Finally, in sections 10.4 and
10.5, we develop three case studies, in order to illustrate the incremental and
proof-based modeling using Event B. We emphasize the notion of proof-based
patterns applied for the Event B method. Section 10.6 describes available tools
for supporting the Event B modeling language and we complete this chapter
with the current and future trends for this method.

10.2. Modeling and verification of a system

10.2.1. Modeling

A relational abstract model AM (AMP of a program P or AMP of a
system P) is defined by a set of states Σ, a set of initial states InitP, a set of
terminal states TermP and a binary relation R over Σ. The set of terminal
states may be empty and, in this case, the program does not terminate; this
feature can be used for modeling programs or procedures of operating
systems which are not terminating and cannot terminate at all. We will use
system rather than program, since we can describe elements, which are more
general than computer programs but also the formalism is usable for
describing distributed applications.

A system is characterized by a set of traces generated from the abstract
model as follows:

s0 −→
R

s1 −→
R

s2 −→
R

s3 −→
R

. . . −→
R

si −→
R

. . . is a trace generated by
the abstract model.

The observation of a system can be summarized by the analysis of its traces;
ΘS is a set of all traces of S. The expression of properties requires an assertion

iste 5
Title will be updated (i.e. "2" will be deleted)

Event B 3

language or a formulas language: L is an assertion language. A simple choice
is to consider the language of assertions defined by P(Σ) (power set of Σ)
and ϕ(s) (or s ∈ ϕ), which means that ϕ is true in the state s. The assertion
language allows us to express properties, however it may be possible that the
language is not expressive enough. We assume that the language is sufficiently
expressive (following Cook) and this means that the required properties for
completeness can be expressed in the language.

Properties of a system S are, in particular, safety properties and liveness
properties. Safety properties are, for instance, the partial correctness of a
system S with respect to its specifications, the absence of runtime errors;
liveness properties are, for instance, the termination of a program P with
respect to its specifications or the total correctness of P with respect to its
specifications. We could also consider program properties as performance but
this leads to the models for expressing the non-functional properties.
Properties are expressed in a language L and its components can be combined
using logical connectives or instantiation of variables; the implication relation
upto the equivalent relation defines a partial ordering over a set of formulas.

We assume that a system S is modeled by a set of states ΣS, denoted by Σ,
where Σ

def
= VARIABLES −→ VALEURS. The expression s ∈ A is equivalent

to s[[ϕ(x)]], where x is a list whose elements are variables VARIABLES; this
means that s ∈ A is equivalent to ϕ(x) is true in s. The meaning of a formula
or a predicate can be given using an inductive process on s[[ϕ(x)]].

EXAMPLE 10.1.–

1) s[[x]] is the value of s in x, i.e. s(x) or the value of x in s.

2) s[[ϕ(x) ∧ ψ(x)]]
def
= s[[ϕ(x)]] and s[[ψ(x)]].

3) s[[x = 6 ∧ y = x+ 8]]
def
= s[[x]] = 6 and s[[y]] = s[[x]] + 8.

We use the notations for simplifying the indication of a state: for instance,
s[[x]] is the value of x in s and the name of the variable x and its value will
not be distinguished; s′[[x]] is the value of x in s′ and will be denoted by x′.
Consequently, s[[x = 6]]∧s′[[y = x+8]] is simplified into x = 6∧y′ = x′+8.
The consequence is that we can write the transition between two states as a
relation relating the state of variables in s and the state of variables in s′.

4 Formal Methods Applied to Complex Systems 2

Let s, s′ be two states of the set VARIABLES −→ VALS .
s −→

R
s′ is rewritten as a relation R(x, x′) where x and x′ are values of x.

We have introduced primed variables borrowed from the Temporal Logic
of Actions of Lamport [LAM 94] and x′ is the value after the transition under
consideration and x is the value before the transition under consideration. The
expression ∃y.R(x, y) defines the condition for transition or the guard. We are
interested in particular expressions like cond(x) ∧ x′ = f(x) where cond is a
condition over x and f is a function. We can express induction principles using
relations over unprimed and primed variables. Initial conditions are defined by
a predicate characterizing the initial values of variables. We propose to define
more generally a relational model of a system. A set of states is Σ for a given
system and we identify this set with a set of possible values of flexible variables
x. We use the same notation but VALS will be a set of possible values of x.

DEFINITION 10.1.– Relational model of a system

A relational model MS for a system S, is a structure

(Th(s, c), x, VALS , INIT(x), {r0, . . . , rn}),

where

– Th(s, c) is a theory defining sets, constants and static properties of these
elements.

– x is a list of flexible variables.

– VALS is a set of possible values for x.

– INIT(x) defines a set of initial values of x.

– {r0, . . . , rn} is a finite set of binary relations relating the prevalues x and
the postvalues x′.

A relational model MS = (Th(s, c), x, VALS , INIT(x), {r0, . . . , rn}) for
a system S is a structure for studying a system defined by a model. We assume
that the r0 is the relation Id[VALS], identity over VALS .

DEFINITION 10.2.– Let (Th(s, c), x, VALS , INIT(x), {r0, . . . , rn}) be a
relational model for a system S . The relation NEXT attached to this model, is
defined by the disjunction of relations ri: NEXT

def
= r0 ∨ . . . ∨ rn.

Event B 5

Modeling a system leads to identifying state variables x, a predicate
defining the initial conditions of x and a relation NEXT expressing how the
values of variables before and after are related. Induction principles are
formulated in these relational models and here, we introduce the definition as
follows:

Let (Th(s, c), x, VALS , INIT(x), {r0, . . . , rn}) be a relational model of
a system S . The theory Th(s, c) is defined in an assertion language, which
can express properties. An example is the set theory of the B language. When
we consider a property ϕ, we use this set-theoretical language of B. For any
variable x, we define the following values:

– x is the current value of x.

– x′ is the next value of x.

10.2.2. Safety properties

The safety property states that nothing bad will happen [LAM 80]. For
instance, the value of x is always between 0 and 67; the sum of the current
values of x and y is the current value of z. The assertion language is supposed
to be (P(Σ),⊆) and we suppose that the satisfaction relation is defined using
the membership relation.

DEFINITION 10.3.– A property ϕ is a safety property for a system S, when

∀s, s′ ∈ Σ.s ∈ InitS ∧ s
⋆−→
R

s′ ⇒ s′ ∈ ϕ.

The expression ⋆−→
R

stands for the reflexive transitive closure of the
relation −→

R
. The safety property uses a universal quantification over states.

For proving a safety property, we can either check a property for each
possible state, if the set of states is finite, or, find an induction principle. In the
case of an exhaustive checking, we can use an algorithm for computing the
set of reachable states from the initial nodes: the model
checking [MCM 93, HOL 97, CLA 00]. It helps to find the counter-examples
and is a complementary approach to use the induction principle following in
the next property.

6 Formal Methods Applied to Complex Systems 2

THEOREM 10.1.– Induction principle

A property ϕ is a safety property for a program P if, and only if, there exists
a property INV satisfying

⎧
⎪⎨

⎪⎩

(1) InitP ⊆ INV
(2) INV ⊆ ϕ
(3) ∀s, s′ ∈ ΣP.s ∈ INV ∧ s −→

R
s′ ⇒ s′ ∈ INV

The property INV is called a program invariant and it is a special safety
property stronger than the other safety properties of a program. The
justification of this principle is simple.

PROOF.–
⟨1⟩1. SUPPOSE THAT: There exists a property INV such that

⎧
⎪⎨

⎪⎩

(1) InitP ⊆ INV
(2) INV ⊆ ϕ
(3) ∀s, s′ ∈ ΣP.s ∈ INV ∧ s −→

R
s′ ⇒ s′ ∈ INV

PROVE THAT: ϕ is a safety property for the program P.

PROOF.– Let two states s, s′ such that s ∈ InitP ∧ s
⋆−→
R

s′. We can
construct a sequence of states s = s0 −→

R
s1 −→

R
s2 −→

R
s3 −→

R
. . . −→

R
si = s′. from assumption (1), we derive that INV holds at s. By

using (3) for any state of the trace, we derive that INV holds at
s1, s2, . . . si. Then, we apply (2) for the state s′ and we derive that s′

satisfies ϕ. !
⟨1⟩2. SUPPOSE THAT: ∀s, s′ ∈ Σ.s ∈ InitP ∧ s

⋆−→
R

s′ ⇒ s′ ∈ ϕ

PROVE THAT: There exists a property INV such that
⎧
⎪⎨

⎪⎩

(1) InitP ⊆ INV
(2) INV ⊆ ϕ
(3) ∀s, s′ ∈ ΣP.s ∈ INV ∧ s −→

R
s′ ⇒ s′ ∈ INV

PROVE THAT: ϕ is a safety property for the program P

PROOF.– We define the following property INV
def
= ∃s ∈ Σ.s ∈ InitP ∧

s
⋆−→
R

s′. INV states that the state s′ is a reachable state from some initial

Event B 7

state of P. R⋆ is the reflexive transitive closure of R. The three properties
are simple to check for INV . INV is called the strongest invariant of the
program P. !

⟨1⟩3. Q.E.D.

PROOF.– By steps ⟨1⟩1 and ⟨1⟩2, we infer the conclusion. !
!

The property explains Floyd’s invariance proof method also known as
Floyd–Hoare’s methods [FLO 67, HOA 69], initially sketched by Turing in
1949 [TUR 49]. The property gives a general form for the induction and then
we can rephrase it according to the required invariance properties (partial
correctness and absence of deadlocks, etc.). P. and R.
Cousot [COU 00, COU 79, COU 92, COU 78] give a complete synthesis on
the different possible induction principles. We apply these results to the case
of relational models of a system and we obtain an expression of a safety
property as follows:

DEFINITION 10.4.– Let (Th(s, c), x, VALS , INIT(x), {r0, . . . , rn}) be a
relational model for a system S. A property ϕ is a safety property for a system
S, when ∀y, x ∈ Σ.Init(y) ∧ NEXT⋆(y, x) ⇒ ϕ(x).

From the induction principle of the previous section, we can derive the
following property.

THEOREM 10.2.– (Induction principle for a relational model)

Let (Th(s, c), x, VALS, INIT(x), {r0, . . . , rn}) be a relational model for a
system S .

A property ϕ(x) is a safety property for S if, and only if, there exists a
property i(x) such that

⎧
⎨

⎩

(1) ∀x ∈ VALS .Init(x) ⇒ i(x)
(2) ∀x ∈ VALS .i(x) ⇒ ϕ(x)
(3) ∀x, x′ ∈ VALS .i(x) ∧ NEXT(x, x′) ⇒ i(x′)

PROOF.– Derived from the proof of the property 10.2. !

If we transform properties, we obtain a form closer to what we will use
in the next sections and closer to the concept of abstract systems or abstract
machines of Event B.

8 Formal Methods Applied to Complex Systems 2

THEOREM 10.3.– The two sentences are equivalent:

1) There exists a state property I(x) such that

∀x, x′ ∈ VALS :

⎧
⎨

⎩

(1) INIT(x) ⇒ I(x)
(2) I(x) ⇒ P(x)
(3) I(x) ∧ NEXT(x, x′) ⇒ I(x′)

2) There exists a state property I(x) such that:

∀x, x′ ∈ VALS :

⎧
⎨

⎩

(1) INIT(x) ⇒ I(x)
(2) I(x) ⇒ P(x)
(3) ∀i ∈ {0, . . . , n} : I(x) ∧ x ri x′ ⇒ I(x′)

PROOF.– The proof is obvious by applying the following rule:
∀i ∈ {0, . . . , n} : A ∧ x ri x′ ⇒ B ≡ (A ∧ (∃i ∈ {0, . . . , n} : x ri x′)) ⇒ B
and the definition of NEXT(x, x′). !

We have given an explanation of the induction rule used in Floyd’s
method [FLO 67, TUR 49, HOA 69] which states that the invariance
properties are necessary for deriving the safety properties. The invariance
properties are stronger than safety properties. The invariance properties are
also the special case of safety properties. There is a confusion in the literature
where we claim that always true and invariant are two equivalent concepts:
an invariant is an inductive property.

The Event B method uses these two kinds of properties. The clause
INVARIANTS for invariants and in earlier versions of Rodin, the clause
THEOREMS for safety properties. Current versions distinguish both classes
by a feature stating that the predicate is either an invariant or a safety property
(theorem). An invariant is obviously a safety property. Now, we summarize
the Event B language and the incremental and proof-based development of
event-based models.

10.3. Event B: a modeling language

Event B is both a language and a method. Its concepts are limited and
allow the user to manage a simple palette of tools: axioms, theorems,
theories, events, machine, context and refinement. We shortly describe these

Event B 9

elements, but it is clear that examples constitute the best way to learn and
understand how to use tools.

The construction of an Event B model is based on concepts like sets,
constants, axioms, theorems, variables, invariants and events; these syntactic
constructions are organized into two kinds of structures:

– Contexts express axiomatic static properties of the models. Contexts
may contain carrier sets, constants, axioms and theorems. Axioms describe
properties of carrier sets and constants. Theorems derive properties that can be
proved from the axioms. POs associated with contexts are straightforward: the
stated theorems must be proved, which follow from the predefined axioms and
theorems. Additionally, a context may be indirectly seen by machines. Namely,
a context C can be seen by a machine M indirectly if the machine M explicitly
sees a context, which is an extension of the context C.

– Machines express dynamic behavioral properties of the models, which
may contain variables, invariants, theorems, events and variants. Variables
v represents the state of the machine. Variables, like constants, correspond
to simple mathematical objects: sets, binary relations, functions, numbers,
etc. They are constrained by invariants I(v). Invariants are supposed to hold
whenever variable values change.

When a machine is organizing events, modifying the state variables and it
uses static information defined in context. These basic structure mechanisms
are extended by the refinement mechanism which provides a mechanism for
relating an abstract model and a concrete model by adding new events or by
adding new variables. This mechanism allows us to gradually develop Event-B
models and to validate each decision step using the proof tools. The refinement
relationship should be expressed as follows: a model M is refined by a model
P , when P simulates M . The final concrete model is close to the behavior of a
real system that is executing events using real source code. We give details now
regarding the definition of events, refinement and guidelines for developing
complex system models.

– The consistency of a context or a machine in Event B is achieved by
proving proof obligation generated by tools [CLE 02, ABR 10b] and sound
with respect to the results of section 10.2. If these POs are discharged, then
the structure (context or machine) is correct at least with respect to the typing.
Indeed, the main tricky point is the statement and the proof of the invariant
property of a machine, but the refinement is a technique for facilitating the

10 Formal Methods Applied to Complex Systems 2

proof process and the discovery of invariants.

M0 C0

M1 C1

.

Mn Cn

✲SEES

✻
REFINES

✲SEES

✻
EXTENDS

✻
REFINES

✲SEES

✻
EXTENDS

✻
REFINES

✲SEES

✻
EXTENDS

In the next section, we summarize each
structure (context, machine) used for
constructing models for a given system
using relations as EXTENDS, SEES,
REFINES among the structures.
We summarize the general form
of an Event B development in the
diagram. The main advice is to use the
refinement of machines and events as
much as possible.

10.3.1. Basic elements of an Event B model

We start by defining the events that are at the heart of this method and that
react to a condition called a guard. An event is characterized by a condition and
an action. We define three unique possible shapes for events and this will be
sufficient for modeling systems in a general sense. The first form is a normal
form in the sense that it can be reduced to two in this form below. The secondAQ2
case corresponds to a guarded event and the third case corresponds to a guarded
quantified event. Intuitively, the observation of an event is made in the case
where the guard is true but the fact that the guard is true does not allow us to
conclude that the event is or will be observed. Each event can be defined by a
relationship before–after denoted by BA(x, x′).

An event is characterized by its guard, which is determined at the modeling
phase and it can only be triggered if the guard is true. We will detail POs
generated for a given event e and explain the meaning of these POs. In our
presentation, we emphasize the role of refinement, which is defined on events.AQ3
The general form of an event is as follows:

Event B 11

EVENT e
ANY t
WHERE

G(c, s, t, x)
THEN

x : |(P (c, s, t, x, x′))
END

– c and s designate constants and
visible sets by an event e are defined
in the context of clause SEES.

– x is the state variable or a list of
state variables.

– G(c, s, t, x) is the guard or the
enableness condition of e.

– P (c, s, t, x, x′) is the predicate
stating the relation between the pre
value of x, denoted as x, and the post
value of x, denoted as x′.

– BA(e)(c, s, x, x′) is the before-
after relation for the event e defined by
∃t.G(c, s, t, x) ∧ P (c, s, t, x, x′).

For each event e, POs are named according to the following format:
e/inv/ < type > where < type > is either INV , or FIS, or GRD, or
SIM , or THM , or WFIS, or WD, etc. and correspond to generated POs
for ensuring invariance, guard strengthening, simulation, safety and
well-definedness, etc. We do not list the complete list of possible names and
refer to the book of J.-R. Abrial [ABR 10a] for a full version, as well as to the
Rodin platform [ABR 10b]. Now we analyze how the POs are generated.

10.3.2. Invariance properties in Event B

The invariant I(x) of a model is an invariant property for all events of a
system, including the initial event. If e is an event of the model, then the
condition of preservation of this invariant by this event is:
I(x) ∧ BA(e)(c, s, x, x′) ⇒ I(x′) (INV). I(x) is written as a list of
predicates labeled inv1 . . . invn and interpreted as a conjunction. The
condition on the initial conditions is as follows:
Init(x, s, c) ⇒ I(x) (INIT) .

When an event e defines the predicate before–after BA(e)(c, s, x, x′), the
feasibility of this event means that under hypothesis defined by the invariant
I(x) and guard grd (e), of the event, there is still x′ such that
BA(e)(c, s, x, x′). In other words, it means that this event, when observed,

12 Formal Methods Applied to Complex Systems 2

will not induce unwanted behaviors and we give a condition for each event:
I(x) ∧ grd (e) ⇒ ∃x′ ·BA(e)(c, s, x, x′) (FIS).

Safety properties are derived by the proof that the system invariant implies
safety property A(x) and, moreover, we add the context C(s, c) of this proof.
The context of this proof is given by the properties C(s, c), where sets s and
constant c are defined in the model: C(s, c) ∧ I(x) ⇒ A(s, c, x) (THM).

To conclude this point on POs, they are derived from the theorem 10.2 and
we can therefore conclude the following property.

THEOREM 10.4.– Let Th(s, c) be a theory defined by sets s, constants c and
axioms C(s, c) and let E be a finite list of events modifying x in the context
define by the theory Th(s, c). We assume the following points:

– VALS is a set of possible values for x.

– {r0, . . . , rn} is a set of relations BA(e)(s, c, x, x′) defined for event e of
E and one of the events is the event skip.

– INIT(x) is the predicate defining the initial conditions of x.

If the POs (INIT) and (INV) are valid, then the relational model
(Th(s, c), x, VALS , INIT(x), {r0, . . . , rn}) satisifies the invariant I(x) and
the safety properties A(s, c, x).

We now give the various POs generated from the general form given above.
We assume that the context of theory is C(s, c) and we use the notation
C(s, c) ⊢ P to express the proof obligation P in C(s, c) context. So, we have
the following reformulation:

– INIT/I/INV: C(s, c), INIT (c, s, x) ⊢ I(c, s, x)

– e/I/INV: C(s, c), I(c, s, x), G(c, s, t, x), P (c, s, t, x, x′) ⊢ I(c, s, x′)

– e/act/FIS: C(s, c), I(c, s, x), G(c, s, t, x) ⊢ ∃x′.P (c, s, t, x, x′)

We have instantiated the induction principle to ensure invariance of I . The
POs generator performs also important simplifications for facilitating the proof
checking process by the provers.

Event B 13

10.3.3. Refinement of events

EVENT e
ANY t
WHERE

G(c, s, t, x)
THEN

x : |(P (c, s, t, x, x′))
END

EVENT f
REFINES e
ANY u
WHERE

H(c, s, u, y)
WITNESSES

t : W1(c, s, t, u, y)
x′ : W2(c, s, t, x′, y)

THEN
y : |(Q(c, s, t, y, y′))

END

In the above schema, t : W1(c, s, t, u, y) is a proof witness to connect the
current parameter u and the parameter t of the event e, x′ : W2(c, s, t, x′, y)
is a proof witness to connect the variable y and the next value of x. The event
f refines the event e, when the observation of f at the concrete level, implies
that the event e at the abstract level also appears. More formally, the
refinement of e by f is defined by the formula: I I(c, s, x) ∧
J(c, s, x, y) ∧ BA(f)(c, s, y, y′) ⇒ ∃x′.(BA(e)(c, s, x, x′) ∧
J(c, s, x′, y′)) where J(c, s, x, y) is the invariant of the concrete level
ensuring the relationship between concrete and abstract variables. We
schematize refinement as follows:

abstract level I(x) I(x′) machine M : x, I(x)

concrete level J(x, y) J(x′, y′)machine N : y, J(x, y)

✲e

✲f

✻
REFINES

Note that the role of predicates W1 and W2 is to provide values to
prove existential properties induced by parameters but also by reference to
the abstract level. Without these hints, the user should propose possible values
while using the interactive proof tools. The general form of proof obligation
for the refinement of f by e also takes into account the case where f is a new AQ4
event at the concrete level and in this case f refines skip that does not change
the variable x. We will give the above formulation as generated POs.

14 Formal Methods Applied to Complex Systems 2

– e/act/SIM:

⎛

⎜⎜⎝

C(s, c),
I(c, s, x), J(c, s, x, y), H(c, s, t, y),
Q(c, s, t, y, y′),
W1(c, s, t, u, y),W2(c, s, t, x′, y)

⎞

⎟⎟⎠ ⊢ P (c, s, t, x, x′)

– e/grd/FIS:

⎛

⎝
C(s, c),
I(c, s, x), J(c, s, x, y),
H(c, s, t, y),W1(c, s, t, u, y)

⎞

⎠ ⊢ G(c, s, t, x)

We have given the clear definitions of generated POs to verify the
refinement of an event by others. It remains to define the structures of
machines and contexts.

10.3.4. Structures for Event B models

The Event B modeling language provides a framework for supporting
our methodology as applied to the development of sequential programs.
Abrial [ABR 03b] has demonstrated the possibility of developing sequential
programs using Event B. The modeling process deals with various languages,
as seen by considering the triptych of Bjoerner [BJO 06a, BJO 06b, BJO 06c,
BJØ 07]: D,S −→ R. Here, the domain D deals with properties, axioms, sets,
constants, functions, relations and theories. The system model S expresses
a model or a refinement-based chain of models of the system. Finally, R
expresses requirements for the system to be designed. Considering the Event B
modeling language, we notice that the language can express safety properties,
which are either invariants or theorems in a machine corresponding to the
system. Recall that two main structures are available in Event B.

– Contexts express static information about the model.

– Machines express dynamic information about the model, invariants,
safety properties and events.

10.3.4.1. Contexts

The first structure is called a context (see Figure 10.1), and it provides the
definition of the sets, constants, axioms for sets and constants, and theorems
that can be derived from the axioms of the context D. The context AD is
a previous context that has already been defined, and it extends the current
context. A context is validated when sets S1, . . . , Sn, constants C1, . . . , Cm

Event B 15

and axioms ax1, . . . , axp are well-formed and when all theorems th1, . . . , thq
are proved.

CONTEXT D
EXTENDS AD
SETS

S1, . . . Sn

CONSTANTS
C1, . . . , Cm

AXIOMS
ax1 : P1(S1, . . . Sn, C1, . . . , Cm)
. . .
axp : Pp(S1, . . . Sn, C1, . . . , Cm)

THEOREMS
th1 : Q1(S1, . . . Sn, C1, . . . , Cm)
. . .
thq : Qq(S1, . . . Sn, C1, . . . , Cm)

MACHINE M
REFINES AM
SEES D
VARIABLES x
INVARIANTS

inv1 : I1(x, S1, . . . Sn, C1, . . . , Cm)
. . .
invr : Ir(x, S1, . . . Sn, C1, . . . , Cm)

THEOREMS
th1 : SAFE1(x, S1, . . . Sn, C1, . . . , Cm)
. . .
ths : SAFEs(x, S1, . . . Sn, C1, . . . , Cm)

EVENTS
EVENT initialisation

BEGIN
x : |(P (x′))

END
. . .
EVENT e

ANY t
WHERE

G(x, t)
THEN

x : |(P (x, x′, t))
END

. . .END

Figure 10.1. Context and Machine

A context clearly states the static properties of the (system) model under
construction. The extends construct enables reuse by extending a previously
defined context.

The proof process is based on the management of sequents, with an
associated environment for proof called Γ(D). The proof environment
includes axioms, properties and theorems already proved. An environment is
initially provided, but the intention is to add new theorems. This means that
we intend to prove the following properties in the sequent calculus style:

for any j in {1..q}, Γ(D) ⊢ thj : Qj(S1, . . . Sn, C1, . . . , Cm).

16 Formal Methods Applied to Complex Systems 2

Theorems for the context are proved using the RODIN tool, but it is clear
that the process for constructing the domain D is crucial to modeling the
system, from consideration of the triptych of
Bjoerner [BJO 06a, BJO 06b, BJO 06c, BJØ 07] and variations of this
methodology.

The possibility of reusing former definitions is crucial, but we do not
consider this point in this paper. Instead, we simulate the reuse of theories by
manipulating the contexts directly. Among the requirements, we can list the
theorems of the context, and we can, in fact, interpret the triptych as follows:
for any

j in {1..q}, D −→ thj : Qj(S1, . . . Sn, C1, . . . , Cm).

Here, it appears that the system is not mentioned, and this is the case for
static properties. Therefore, we have an interpretation of the triptych for the
static information, which can be reused later for any system.

10.3.4.2. Machines

The dynamic part of a model is expressed using the notion of the machine
(see Figure 10.1). A machine is either a basic machine or a refinement of an
abstract machine. A machine models a state via a list of variables x that are
assumed to be modifiable by events listed in the machine. The view is assumed
to be closed with respect to events. Each event maintains an assertion called
an invariant, which is a conjunction of logical statements called invj . Each
reached state satisfies properties of the theorem part called safety properties.
POs are given in section 10.6, and they are generated and checkable by the
RODIN framework. The validation of the machine M leads to the validation of
the safety and invariance properties.

We can obtain a variation of the triptych (Γ(D,M) is an associated
environment for proof) as follows:

– For any j in {1..r}, Γ(D,M) ⊢ INITIALISATION(x′) ⇒
Ij(x′, S1, . . . Sn, C1, . . . , Cm)

– For any j in {1..r}, for any event e of M, Γ(D,M) ⊢
(

∧
j∈{1..r}

Ij(x, S1, . . . Sn, C1, . . . , Cm)) ∧ BA(e)(x, x′) ⇒ Ij(x′, S1, . . . ,

Sn, C1, . . . , Cm)

Event B 17

– For any k in {1..s}, Γ(D,M) ⊢ (
∧

j∈{1..r}
Ij(x, S1, . . . , Sn,

C1, . . . , Cm)) ⇒ SAFEk(x, S1, . . . Sn, C1, . . . , Cm)

We use temporal operators for expressing the safety and invariant
properties.

– For any j in {1..r}, D,M −→ !Ij(x, S1, . . . Sn, C1, . . . , Cm).

– For any k in {1..s}, D,M −→ !SAFEk(x, S1, . . . Sn, C1, . . . , Cm).

We summarize the requirements expressed by the machine M as follows:

D,M −→ !

⎛

⎜⎜⎜⎜⎝

(
∧

j∈{1..r}
Ij(x, S1, . . . Sn, C1, . . . , Cm)

)

(
∧

k∈{1..s}
SAFEk(x, S1, . . . Sn, C1, . . . , Cm)

)

⎞

⎟⎟⎟⎟⎠

We will use the notation I(M) to stand for the invariant of the machine M
and SAFE(M) to stand for the safety properties of the machine M . We have
shown that requirements R are first expressed using the always temporal
operator. To specify total correctness properties, we should extend the scope
of the requirements language by adding eventuality properties. Eventuality
properties will be defined in section 10.4, which will be specific to our
methodology.

10.4. Formal development of a sequential algorithm

In this section, we discuss two simple case studies to illustrate how we can
develop sequential algorithms using the Event B method following two
development techniques. From previous works, we quote case studies
developed by J.-R. Abrial [ABR 03b] and his transformation rules used from
Event B models to obtain sequential algorithms; however, we have also
proposed a method [MÉR 09b, MÉR 09a] providing a framework to guide
refinement steps, relying on an interpretation of an event as a procedure call.
The second approach allows us to produce recursive algorithms from an
Event B model and to express an invariant in a simple way. Transformations
techniques can be applied on the resulting recursive algorithms are used to

18 Formal Methods Applied to Complex Systems 2

produce iterative algorithms implemented in a real programming language
like Spec# [MÉR 13]. We illustrate these two techniques by two very simple
examples: the problem computing the sum of a vector of integer values
v1, . . . , vn and the problem searching for an item x in a table t.

10.4.1. Derivation of an algorithm for computing the sum of a sequence of
values by refinement and transformation of the model into an algorithm

10.4.1.1. Description of the problem

At first, we state the sum s of the sequence v in the Event B language;

the mathematical expression is easy: s =
k=n∑
k=1

v(k). As the notation for the

summation of a finite sequence is not available in Event B, we have to define
this notion in a context summation0, which will contain inputs and specific
notations of the problem.

Inputs of the problem n and v are defined as a non zero natural number
(axm1 and axm2) and a total function defined on 1..n and ranging over N
(axm3). We have to define the underlying theory of the problem.

Second, we introduce a sequence u of values defining partial summations:
k=i∑
k=1

v(k), which is inductively defined:

– u is a total function from N into N (axiom axm4).

- Initially, the summation starts by 0 and u(0) = 0 (axiom axm5).

– When i is smaller than n, the value u(i) is defined from u(i− 1) and v(i)
(axiom axm6).

– When i is greater than n, the value of u(i) is u(n) (axiom axm7).

Axioms are given in the context summation0 and constitutes a theory which
will be used for proving properties of models.

Event B 19

CONTEXT summation0
CONSTANTS

n, v, u
AXIOMS

axm1 : n ∈ N
axm2 : n ̸= 0
axm3 : v ∈ 1 .. n→ N
axm4 : u ∈ N→ N
axm5 : u(0) = 0
axm6 : ∀i·i ∈ N ∧ i > 0 ∧ i ≤ n⇒ u(i) = u(i− 1) + v(i)
axm7 : ∀i·i ∈ N ∧ i > n⇒ u(i) = u(n)

THEOREMS
thm1 : ∀i·i ∈ N⇒ u(i) ≥ 0

END

In the above context, it is noted that the clause THEOREMS is used and its
use allows us to derive properties for mathematical data defined by their
axioms. In the current tool Rodin, the authors merge axioms and theorems in
the clause AXIOMS. However, among the list of statements, the tool identifies
the two different sets of statements for axioms and theorems. We use a
notation that allows a better expression of these theories. Finally, each axiom
is validated by a set of generated POs to ensure consistency of definitions. It
is the same for theorems that must be proved from an environment defined by
the axioms with the rules of proof assistant. So we have defined the
mathematical framework of the problem and we will now define the problem
of summation of the sequence v.

10.4.1.2. Specification of the problem to solve

The problem is to calculate the value of sum of elements of the sequence
v. We define a machine summation1, which is a model expressing through the
event summation, the expression of the postcondition sum = u(n). In fact,
new value of the variable sum amount is u(n), when the event summation1
has been observed. The initial value of sum is any initialization. Finally, the
variable sum must satisfy the simple invariant inv1 : sum ∈ N. The event
summation1 is simply an assignment of value u(n) to sum.

20 Formal Methods Applied to Complex Systems 2

MACHINE summation1
SEES summation0
VARIABLES

sum
INVARIANTS

inv1 : sum ∈ N
EVENT INITIALISATION

BEGIN
act1 : sum :∈ N

END
EVENT summation1

BEGIN
act1 : sum := u(n)
END

END

We can state an expression as a
HOARE triple HOARE: {n > 0 ∧ v ∈
1 .. n→N}SUMMATION{sum =
u(n)} where SOMMATION is
the algorithmic solution. The visible
data or inputs are in the context
summation0. The problem is then to
find an algorithm SUMMATION
computing the value u(n) and
storing it in the variable sum. C.
Morgan [MOR 90] uses the same
method and we are only simulating his
refinement calculus, with the objective
to construct an algorithmic solution
from a pre and post specification.

We have described the domain of the problem and we have formulated what
we want to calculate. The next step is the development of calculation method,
which requires an idea of solution using refinement.

10.4.1.3. Refining for computing

We have defined the specification of the problem calculating the sum of
elements of the sequence v and now we must find an algorithmic method for
computing the value u(n). In the previous machine, we state that what to
compute and now we define how to compute. The assignment sum := u(n) is
an expression for combining a variable sum and a constant u(n). A
well-known trivial and inefficient solution is to store the values of sequence u
in a table t and to translate the assignment as sum := t(n) where t verifies
the property ∀k.k ∈ dom(t) ⇒ t(k) = u(k) and this property forms an
invariant inv8. The idea is to use the variable t (t ∈ 0 nupto 1→ N) to control
the calculation and its progression. The progression is ensured by the event
step2 that decreases the value n − i and thus ensures the convergence of the
process.

Event B 21

MACHINE summation2
REFINES summation1

SEES summation0
VARIABLES

sum, t, i
INVARIANTS

inv1 : i ∈ N
inv2 : i ≥ 0
inv3 : i ≤ n
inv4 : t ∈ 0 .. n 1→ N
inv5 : dom(t) = 0 .. i
inv6 : n /∈ dom(t)⇒ i < n
inv7 : dom(t) ⊆ dom(u)

inv8 : ∀k ·

⎛

⎝
k ∈ dom(t)
⇒
t(k) = u(k)

⎞

⎠

inv9 : dom(u) = N

EVENT INITIALISATION
BEGIN

act1 : sum :∈ N
act2 : t := {0 1→ 0}
act3 : i := 0

END
EVENT summation2

REFINES summation1
WHEN

grd1 : n ∈ dom(t)
THEN

act1 : sum := t(n)
END

EVENT step2
WHEN

grd11 : n /∈ dom(t)
THEN

act11 : t(i+ 1) := t(i) + v(i+ 1)
act12 : i := i+ 1

END
END

The model summation2 describes a process that gradually fills t and
therefore retains all intermediate results. POs are fairly easy at some extent to
prove through proof assistant. We summarize a proof statistics table at the end
of development. It is quite clear that the variable t is in fact a witness or a
track of intermediate values and this variable can be hidden in this model,
when it will be refined. Before to hide this variable, we will put aside the
value to maintain t(i).

10.4.1.4. Focus on a value to keep

The next refinement summation3 leads to introduce a new variable psum
that will hold the value t(i). It thus makes a superposition [CHA 88] on the
model. The idea is that this model refines or simulates the previous model
summation2; it also means that the properties of the refined model are
verified by the new model summation3 as long as all the POs are
discharged.

22 Formal Methods Applied to Complex Systems 2

MACHINE summation3
REFINES summation2

SEES summation0
VARIABLES

sum, i, t, psum
INVARIANTS

inv1 : psum ∈ N
inv2 : psum = u(i)

EVENT INITIALISATION
BEGIN
act1 : sum :∈ N
act2 : i := 0
act3 : t := {0 1→ 0}
act4 : psum := 0
END

EVENT summation3
REFINES summation2
WHEN
grd1 : n ∈ dom(t)
grd2 : i = n

THEN
act1 : sum := psum

END
EVENT step3 REFINES step2

WHEN
grd1 : n /∈ dom(t)
grd2 : i < n

THEN
act1 : t(i+ 1) := t(i) + v(i+ 1)
act2 : i := i+ 1
act3 : psum := psum+ v(i+ 1)

END
END

This model is very expressive and provides extensive information to ensure that
the model is correct with respect to the specification expressed in the model
summation1. It is even clear that this model summation3 is expensive in terms of
use of variables. Refinement allows us to select only useful variables for calculation.
In the following, we will make the more algorithmic model and keep the model
sufficient concrete for calculating variables.

10.4.1.5. Obtaining an algorithmic model
In this last step, we refine the model summation3 by a model summation4

and we hide the variable t in the abstract model summation3. Thus, the model
summation4 includes variables sum, psum and i and it should also be noted that it
satisfies safety properties called theorems in the model summation4. The properties
are proved from the properties of the previous refined models. Here, we have got a
model with an initialization and two events:

– The event summation4 is observed, when the value of i is n and, in this case,
the variable psum contains the value u(n). The invariant ensures that the value of
psum is u(n).

– The event step4 is observed, when the value of i is smaller than n. It means that,
while this value is smaller than n, the event can be observed and the traces generated
from these events correspond to an iterative construct.

Event B 23

MACHINE summation4
REFINES summation3

SEES summation0
VARIABLES
sum, i, psum

THEOREMS
inv1 : psum = u(i)
inv2 : i ≤ n

EVENT INITIALISATION
BEGIN

act1 : sum :∈ N
act2 : i := 0
act3 : psum := 0

END

EVENT summation4 REFINES summation3
WHEN

grd1 : i = n
THEN

act1 : sum := psum
END

EVENT step4 REFINES step3
WHEN

grd1 : i < n
THEN

act1 : i := i+ 1
act2 : psum := psum+ v(i+ 1)

END
END

J.-R. Abrial [ABR 10a] proposes rules for progressively transforming
models into algorithm. These rules are simple and we are considering them in
our example.

Fusion of two events for deriving an iteration

Consider the two events which can be merged to obtain an algorithmic
expression:

WHEN
P
Q

THEN
S

END

WHEN
P
¬Q

THEN
T

END

– If P is an invariant for S, then the two
events can be merged into one event:

WHEN
P

THEN
WHILE Q DO

S
OD;
T ;

END

– If P is not in the events, then there is no
guard.

24 Formal Methods Applied to Complex Systems 2

Merging two events for deriving a conditional statement.

Consider the two events which can be merged to obtain an algorithmic
expression:

WHEN
P
Q

THEN
S

END

WHEN
P
¬Q

THEN
T

END

– If the condition on P is weaker then we
can introduce a conditional statement:

WHEN
P

THEN
IF Q THEN

S
ELSE;

T ;
FI;

END

These two transformations are correct, since they preserve the generated
traces. In our case, we can apply the first transformation on the model
summation4. Let the three events of summation4:

EVENT summation4
REFINES summation3
WHEN
grd1 : i = n

THEN
act1 : sum := psum

END

EVENT pas3
REFINES pas3
WHEN

grd1 : i < n
THEN

act1 : i := i+ 1
act2 : psum := psum+ v(i+ 1)

END

Event B 25

EVENT INITIALISATION
BEGIN
act1 : sum :∈ N
act2 : i := 0
act3 : psum := 0

END

BEGIN
act1 : sum :∈ N;
act2 : i := 0;
act3 : psum := 0;
WHILE grd1 : i < n DO

act2 : psum := psum+ v(i+ 1)
act1 : i := i+ 1

OD;
act1 : sum := psum
END

The algorithm is obtained by merging the two events summation4 and
step4 in an iteration and by sequential composition of the initialization.

{(
n > 0
∧v ∈ 1 .. n→ N

)}

BEGIN
sum :∈ N;
i := 0;
psum := 0;
WHILE i < n DO

psum := psum+ v(i+ 1)
i := i+ 1

OD;
sum := psum
END

{sum = u(n)}

Examples which have been treated with this method, can be found on the
website dedicated to the Rodin project. In the publications
[ABR 10a, ABR 03b], J.-R. Abrial has addressed both this technique and
examples in more or less complicated way. Before concluding this study, it is
important to give statistics on the number of POs and the difficulties of
proofs, which are proved manually with the help of proof assistant. Table 10.1
indicates that 78.2% of POs are proved automatic but 21.7%, made by
interaction with proof assistant are not complicated, as long as we use the
progressive refinement.

26 Formal Methods Applied to Complex Systems 2

Model Total Auto Manual % Auto %
Manual

summation0 5 0 5 0% 100%
summation1 4 3 1 75% 25%
summation2 23 21 2 87% 13%
summation3 7 5 2 71% 29%
summation4 7 7 0 100% 0%
Total 46 36 10 78,2% 21,7%

Table 10.1. Table for statistics for the development of summation

10.4.2. Development of a sequential algorithm using the proof-based pattern
call-as-event

If we consider the problem to solve, we recall that we try to write a
PROCEDURE correctly with respect to the pre/post specification:

PROCEDURE PROCEDURE(x;VAR y)
PRECONDITION P (x)
POSTCONDITION Q(x, y)

For the second development of a sequential algorithm, we use the proof-
based pattern:

CALL PREPOST PB

PROCEDURE M CM
❄

call

✲call−as−event

❄

REFINEMENT

✲SEES

❄

EXTENDS

✛mapping ✲SEES

The schema is explained as follows:

– CALL is the call of PROCEDURE.

– PREPOST is the machine containing the events stating the pre- and
post-conditions of CALL and PROCEDURE, and M is the refinement machine
of PREPOST, with events including control points defined in CM.

Event B 27

– The call-as-event transformation produces a model PREPOST and a
context PB from CALL.

– The mapping transformation allows us to derive an algorithmic procedure
that can be mechanized.

– PROCEDURE is a node corresponding to a procedure derived from the
refinement model M. CALL is an instantiation of PROCEDURE using parameters
x and y.

– M is a refinement model of PREPOST, which is transformed into
PROCEDURE by applying structuring rules. It may contain events corresponding
to the calls of other procedures.

We consider the problem searching a value v in a table t. The specification
is stated as follows:

PROCEDURE search(x, t, n;VAR i, ok)
PRECONDITION x ∈ A ∧ n > 0 ∧ t ∈ 1 .. n→A

POSTCONDITION
(
(∀k ·k ∈ 1 .. n⇒ t(k) ̸= x) ⇒ ok = no
(∃k ·k ∈ 1 .. n ∧ t(k) = x) ⇒ ok = yes

)

We try to identify the following elements of the pattern for our problem:

search(x,t,n;i,ok) specsearch search0

search simsearch csearch0
❄

call

✲call−as−event

❄

REFINEMENT

✲SEES

❄

EXTENDS

✛ mapping ✲SEES

28 Formal Methods Applied to Complex Systems 2

CONTEXT search0

SETS
A

REPLIES

CONSTANTS
x, t, n, yes, no

AXIOMS
axm1 : n ∈ N1

axm2 : x ∈ A

axm3 : t ∈ 1 .. n→A

axm4 : REPLIES = {yes, no}
axm5 : yes ̸= no

END

Describing the context of the
problem PB is given by a
context search0 that easily
defines the structure of search
t. We also need to define a set
of possible results. This context
is actually used to correctly
describe the pre-condition of
the search search0. We can
now define the specification
itself by writing the machine
specsearch which will include
events simulating the call
search.

The machine specsearch includes an initialization event and two events:
find that models the procedure search, when it finds an element x in the table
t, and unfind which models the procedure search, when it finds no element x
in the table t. In fact, the two events give a definition of what but not of how,
and these events are a simple way to describe the expected behavior. To define
in a more operational way, we will refine. Thus, these two events are only two
instances of calling this procedure.

MACHINE specsearch

SEES search0

VARIABLES
i, ok

INVARIANTS
inv1 : ok ∈ REPLIES

inv2 : i ∈ 1 .. n

EVENT INITIALISATION
BEGIN
act1 : i :∈ 1 .. n

act2 : ok := no

END

EVENT find
ANY

j

WHERE
grd1 : j ∈ 1 .. n

grd2 : t(j) = x

THEN
act1 : ok := yes

act2 : i := j

END
EVENT unfind

WHEN
grd1 : ∀k·k ∈ 1 .. n⇒ t(k) ̸= x

THEN
skip

END
END

Event B 29

To solve our problem from an operational point of view, we have to
analyze the problem by considering several cases and we introduce a new
variable c, which models the control of the search process. We use a new
context csearch0 that extends search0 defining possible control points:

CONTEXT csearch0
EXTENDS search0
SETS

LOCS
CONSTANTS

start, end, call1
AXIOMS

axm1 : partition(LOCS, {start}, {end}, {call1})
END

MACHINE simsearch
REFINES specsearch

SEES csearch0
VARIABLES

i, ok, c
INVARIANTS

inv1 : c ∈ LOCS
inv2 : c = call1⇒ n ̸= 1 ∧ ok = no
inv3 : c = call1⇒ t(n) ̸= x
inv4 : c = end ∧ ok = yes⇒ t(i) = x
inv5 : c = end ∧ ok = no⇒ (∀g ·g ∈ 1 .. n⇒ t(g) ̸= x)
inv6 : c = start⇒ ok = no

. . .

The invariant describes what is happening during the computation:

– When the control point is at the end and when the variable ok is yes, then
t(i) = x.

– When the control point is at the end and when the variable ok is no, then
i contains any value and x does not occur in t.

30 Formal Methods Applied to Complex Systems 2

To perform this calculation, two cases are introduced either n is equal to 1
or n is not equal to 1. Consider the case where n is 1. In this case, we refine find
by findone, to explain how the value of x can be found in an array with only
one value, if it is indeed in this table, and we refine unfind by notfoundone
in case the value of x is not in t (i.e. t(1) ̸= x). We consider the two sub-
cases and the translation into an algorithmic notation of these two events is
immediate. Each event (findone and notfindone) is translated in the form of a
conditional statement. We can also use EB2ALL [MÉR 11b] tool to translate
the full model and get a C, C++, C# or Java program.

EVENT INITIALISATION
BEGIN

act1 : i :∈ 1 .. n
act2 : ok := no
act3 : c := start

END
EVENT findone

REFINES find
ANY

j
WHERE

grd1 : j ∈ 1 .. n
grd2 : t(j) = x
grd3 : c = start
grd4 : n = 1
grd5 : t(n) = x

THEN
act1 : ok := yes
act2 : i := 1
act4 : c := end

END

EVENT nofindone
REFINES unfind
WHEN

grd1 : ∀k ·k ∈ 1 .. n⇒ t(k) ̸= x
grd2 : n = 1
grd3 : t(n) ̸= x
grd4 : c = start

THEN
act1 : c := end

END

For the second case, we assume that n is not equal to 1 and we will refine
both events find and unfind, for simulating a recursive search. We have events
in parts related to the recursive analysis and these events are controlled using c:

Event B 31

– foundlastone finds the x in the last cell of the table t and sets the
variable ok to yes. The control variable c gets the value end and the search
is completed.

– notfoundlastone does find the value of x in the last cell of the table t and
the searching process should continue on the remaining unvisited cells of the
table t between 1 and n− 1. The control is switching to call1 by updating c.

– The two next events are observed when c = call1, depending on whether
there is a value. Each of these events simulates the procedure search between
1 and n− 1. Obviously, it does not say how the searching process is done and
we translate these two events by recursive calls. This point simplifies invariants
and proofs; reference may be refer to the document [MÉR 09b, MÉR 09a]
introducing this technique to refer the calculation of the shortest path and thus
to find that the invariant is fairly easy to find even if it is complex in its final
form.

EVENT foundlastone
REFINES find
WHEN

grd1 : n ̸= 1
grd2 : t(n) = x
grd3 : c = start

WITNESSES
j : j = n

THEN
act1 : c := end
act2 : i := n
act3 : ok := yes

END
EVENT notfoundlastone

WHEN
grd1 : c = start
grd2 : n ̸= 1
grd3 : t(n) ̸= x

THEN
act1 : c := call1

END

EVENT foundrec
REFINES find
ANY

k
WHERE

grd1 : k ∈ 1 .. n− 1
grd2 : c = call1
grd3 : t(k) = x

WITNESSES
j : j = k
THEN

act1 : c := end
act2 : i := k
act3 : ok := yes

END
EVENT notfounrec

REFINES unfind
WHEN

grd1 : ∀l·l ∈ 1 .. n− 1⇒ t(l) ̸= x
grd2 : c = call1

THEN
act1 : c := end

END
END

We have to derive an algorithm from the list of events in the last model.

32 Formal Methods Applied to Complex Systems 2

Procedure search(x, t, n; i, ok)
BEGIN

i :∈ 1 .. n; ok := no;
IF n = 1 ∧ t(n) = x THEN

ok := yes; i := 1
ELSE IF n = 1 ∧ t(n) ̸= x THEN

skip
ELSE IF n ̸= 1 ∧ t(n) = x THEN

ok := yes; i := n;
ELSE search(x, t, n− 1, i, ok);
FI

END

The procedure (or algorithm)
is generated by transformations
of events into fragments of
codes and these fragments are
organized according to the
variable c.

As we have already pointed out, this technique simplifies the construction
of the invariant and also simplifies its proof. We [MÉR 09b, MÉR 09a] have
made a quite as classic examples calculation of the binomial coefficients,AQ5
calculating the shortest path, the primitive recursive functions, the CYK
algorithm analysis syntax. The tool EB2ALL [MÉR 11b] could be used to
translate these models into C, C++, C# or Java. These two techniques of
development simulate the method of C. Morgan [MOR 90] but the difference
lies in the systematization of the refinement as simple as possible. Do not
develop the model too quickly but introduce machines or intermediate models
that will simplify the work of proof. Finally, note that this model has used the
clause WITNESSES in the event foundrec in the form of j : j = k, this
clause allows the prover to help for instantiating an existential quantifier that
expresses in the abstract event refined by foundrec, it must be given a value
j to observe the abstract event. This device allows to retain information in the
proof of the abstract model. At the balance sheet of POs, Table 10.2 describes
automatic and interactive proofs, where three interactive proofs require some
simple interactions.

10.5. Development of a distributed algorithm

10.5.1. Modeling distributed algorithms

We will illustrate a technique for developing distributed algorithms using
the Event B method. This technique relies on a model of distributed

Event B 33

computing called Visidia [MOS] and the objective is to produce an
algorithm. We consider the problem of spanning tree of a graph and we
consider a proof-based pattern integrating the refinement and allowing to
develop Visidia algorithms, which can be simulated on the platform
Visidia [MOS]. The pattern of development is characterized by the following
diagram:

Model Total Auto Manual % Auto %
Manual

search0 0 0 0 0% 0%
csearch0 0 0 0 0% 0%
specsearch 5 5 0 100% 0%
simsearch 52 49 3 94,2% 5,8%
Total 57 54 3 94,7% 5,3%

Table 10.2. Table with statistics for proof effort in the development of the
search procedure

PROBLEM M0 C

M1

V VM1
❄

derivation

✲formalization

❄
REFINES

✲SEES

❄
REFINES

✛mapping

– The context C details the required properties of graphs, as distributed
algorithms often use properties of graphs.

– The machine M0 describe the problem to solve by giving an abstract
event-based expression, for instance, the leader election in a network is
expressed by the emergence of a node, which knows that it is the leader and
the other nodes know that they are not leader but a leader can be elected. The
existence of a solution obviously depends on the properties of the supporting
graph of the distributed computing.

34 Formal Methods Applied to Complex Systems 2

– Refinement of M0 by M1 expresses how a Visidia model performs
a computation; a model in Visidia is a list of relabeling rules for graph,
that simulates the execution of a distributed computing by localizing the
computations at node or even between two neighbors. The model is very
simple and relatively abstract, but is supported by a simulation tool.

– The next refinement simplifies the model M1, a model where no
relabeling rule appears.

– V is a Visidia model derived from VM1; mapping ensures the translation
of VM1 into VISIDIA [MOS].

The leader election is simply defined by rules applied on two neighbors
nodes:

–
d•−−−−−−−−1• −→ d−1• −−−−−−−−NE•

–
0• −→ E•

Each node is labeled by the number of neighbors and the application of
rules is non-deterministic. The leader is a unique node, where all neighboring
nodes request this node to be a leader. We have developed the leader election
protocol for IEEE 1394 [ABR 03a] on this principle, but up to a more
concrete level, without resolving the issue of probabilities inherent in this
type of algorithm. In Figure 10.2, we give a leader example in graph labeled
with execution rules. Note that these rules calculate the leader in a graph
without cycle.

Figure 10.2. Graph for the leader election
AQ6

We introduce rules for computing the spanning tree in the computing
model. We present the development of the computation of spanning tree in
this model (see Figure 10.3).

Figure 10.3. Computing the spanning tree of graph with a model Visidia

We apply the proof-based pattern for solving the problem of computing a
spanning tree of a connected graph. The problem is called SPAN.

Event B 35

SPAN ONE-SHOT GRAPH

RULES

VSPAN VISIDIA
❄

derivation

✲formalization

❄

REFINES

✲SEES

❄

REFINES

✛mapping

10.5.2. Elements of a proof-based pattern

The modeling of graphs is the starting point of this development. The
context graph defines a graph g as a subset of the set N × N and adds
axioms characterizing that it is symmetrical (axm2) and connected (axm3).

CONTEXT graph
SETS

N
CONSTANTS

g, r
AXIOMS

axm0 : r ∈ N
axm1 : g ⊆ N ×N
axm2 : g = g−1

axm3 : ∀s·s ⊆ N ∧ r ∈ s ∧ g[s] ⊆ s⇒N ⊆ s
END

Then, we give a predicated expression in an event for computing in one
shot of a spanning tree. The machine one− shot has a single-event span that
sets the variable span a spanning tree of graph g. The invariant is simply the
expression span is a subset of g, but it is a spanning tree as indicated by the
expression of the value ar. The important point is to demonstrate that the value
at exists. This is proved by showing that this event is feasible and derived from
the existence of a spanning tree in the mathematical world.

36 Formal Methods Applied to Complex Systems 2

MACHINE one− shot
SEES graph
VARIABLES

span
INVARIANTS

inv2 : span ⊆ g
EVENT INITIALISATION

BEGIN
act2 : span := ∅

END
EVENT span

ANY
at

WHERE
grd1 : at ⊆ g
grd2 : at ∈ N \ {r}→N
grd3 : ∀s·s ⊆ N ∧ r ∈ s ∧ at−1[s] ⊆ s⇒N ⊆ s

THEN
act1 : span := at

END
END

Then, we refine this machine by another machine simulating the
computation of this tree using two variables a and r. The variable a is used to
contain nodes already selected during the calculation for the family tree and
tr contains the spanning tree in construction. The invariant expresses that r is
a forest that is to say that tr is a subset of g without cycle (inv7). The
invariant inv6 expresses that tr is a total function with a domain a without r
and tr plays the role of root of this tree.

Event B 37

MACHINE rules REFINES one− shot
SEES graph
VARIABLES

span, tr, a
INVARIANTS

inv4 : a ⊆ N
inv2 : tr ⊆ g
inv5 : r ∈ a
inv6 : tr ∈ a \ {r}→ a

inv7 : ∀s·

⎛

⎝
s ⊆ a
∧r ∈ s
∧tr−1[s] ⊆ s

⎞

⎠⇒ a ⊆ s

Two events span and rule1 model the possible modifications of tr and a.
We note that it is important to choose a special node starting the process and
a is initialized to the singleton containing r an arbitrary node. The event span
detects the end of the process by testing whether a contains all the elements of
N and sets span to the value of tr. The role of rule1 is different and it chooses
a node y not yet in a but that is reachable from a node of a by the graph g. This
condition aims to avoid creating a cycle.

EVENT INITIALISATION
BEGIN
act4 : span := ∅
act2 : tr := ∅
act3 : a := {r}

END
EVENT span

REFINES span
WHEN
grd1 : a = N

WITNESSES
at : at = tr

THEN
act1 : span := tr

END

EVENT rule1
ANY

x, y
WHERE

grd1 : x ∈ N
grd2 : y ∈ N
grd3 : x 1→ y ∈ g
grd4 : x ∈ a
grd5 : y /∈ a

THEN
act2 : a := a ∪ {y}
act1 : tr := tr ∪ {y 1→ x}

ENDEND

38 Formal Methods Applied to Complex Systems 2

The machine visidia refines the machine rules by making it closer to
Visidia model. In fact, it is a refinement to make symmetric the tree and to
transform events in the rules of model visidia. For representing the
membership of a, we use the black color. The new variable lb is used to
localize this information for each node a and the invariant inv2 expresses this
relationship property between nodes a and black nodes. Colors of marking
are expressed by the set MARKING. At the initialization, all nodes are in
white color except r.

MACHINE visidia REFINES rules
SEES cvisidia
VARIABLES

tr, lb
INVARIANTS

inv1 : lb ∈ N →MARKING
inv2 : ∀i·i ∈ a⇔ lb(i) = BLACK

The two events span and rule1 refine events with the same name in the
model rules and express local conditions in the variable lb.

EVENT INITIALISATION
BEGIN

act2 : tr := ∅
act4 : lb := lb0

END
EVENT span

REFINES span
WHEN

grd1 : ∀i·i ∈ N ⇒ lb(i) = BLACK
THEN

skip
END

EVENT rule1
REFINES rule1
ANY
x, y

WHERE
grd3 : x $→ y ∈ g
grd4 : lb(x) = BLACK
grd5 : lb(y) = WHITE

THEN
act2 : lb(y) := BLACK
act1 : tr := tr ∪ {y $→ x}

END
END

The last step is the generation of rules in the distributed programming
model Visidia and from the event rule1, we derive only one rule when one of
the nodes is black at the initial state.

white• −−−−−−−−black• −→ black• −−−−−−−−black•

Event B 39

We extract the rule defining the Visidia program from the events of the
machine V isidia, which contains in its events only localizable information.
We can therefore deduce the distributed program that builds a spanning tree.
The issue of convergence of this system is inferred from the analysis of
decreasing the set N a by the event rule1.

10.6. Tools

The Event B method is supported by tools like Atelier B [CLE 02] tool and
Rodin [ABR 10b] platform.

10.6.1. Atelier B

The Atelier B tool [CLE 02] is freely distributed by the company ClearSy,
which is proposed for the four platforms Windows, Linux, MacOS and
Solaris; distribution under the license and provides access to the
documentations and case studies. This platform proposes features in a single
frame for the Classical B method and Event B, where Event B syntax is
slightly different. The offered features include the generation of POs to
support the interactive proof, automatic refinement with Bart [CLE 10] tool
and translation tools to C or ADA . The same company continues the free
distribution of a platform called B4Free [CLE 04] based on the joint work of
J.-R. Abrial and D. Cansell on the balbulette [ABR 03c]. The idea of
balbulette provides an interface with the components of Atelier B as proof
obligation generator (POG), the prover or translators, to facilitate the
developer’s task in the approach of interactive proof and project management.
One of the difficulties in the use of tools such as Atelier B lies in the
interactive use of the proof assistant to discharge the POs that could not be
handled by the automatic procedures. B4Free offers support during the
process of proof and applying rules. This tool was a great success with the
academic partners and its features are integrated into the Rodin platform.

10.6.2. The Rodin platform

The Rodin platform is supporting the Event B method in the Eclipse
environment, and follows the work in the framework tools like
Click’n’Prove [CAN]. It is dedicated to Event B but only provides

40 Formal Methods Applied to Complex Systems 2

functionality as plugins (translation into programming languages from Event
B models or integration methodologies like UML). The Rodin platform was
used to develop case studies illustrating this text and
we [MÉR 09c, MÉR 10d, MÉR 10b, MÉR 10c] have used complementary
tools like ProB [Hei], which provides the functionality, such as animation and
model checking.

10.7. Conclusion and perspectives

10.7.1. Applications in case studies

The applications of this technique are numerous and the development of
tools has facilitated these case studies. In our presentation, we have mainly
used the Rodin platform but the Atelier B platform can be substituted. The
proof assistant is partly provided by the platform and provers have been
developed for Rodin. We will mention some applications developed on this
platform, in order to show both the Rodin platform and the Atelier B
platform, which may also be modeled and the strength of tools.AQ7

Distributed algorithms [ABR 03a] constitute a class of interesting complex
algorithmic problems; the development of the leader election in the case of a
acyclic undirected network has opened avenues of research for exploring
issues of time integration [CAN 07b, REH 09] in development and
management inherent and often implicit. Among distributed algorithms, the
cryptographic algorithms constituent also an interesting class to measure the
impact of refinement in their derivation but measure the expressive power of
language Event B face model the Dolev–Yao attacker [BEN 08]. This has led
to the development of algorithms for authentication distribution
key [BEN 09c, BEN 09b, BEN 09a, BEN 10b, BEN 10a] highlighting basic
mechanisms constituting these algorithms. To some extent, the difficulties lie
in the understanding of property being modeled. These studies have also led
the proposed development patterns facilitating introducingAQ8
time [CAN 07b, REH 09] and patterns of development in the programming
model distributed Visidia [MÉR 11a, MÉR 10a]. More recently, the issue of
dynamic networks like networks graphs that evolve over time was studied in
Event B for the discovery of topology [HOA 09b] or routing
dynamic [MÉR 11c].

Event B 41

Regarding sequential algorithms, J.-R. Abrial [ABR 03b] has proposed
rules for translation the Event B models into an algorithmic notation. The
approach has been outlined in this chapter and actually allows us to
(re)develop sequential algorithms. The approach based on the relation call -
event [MÉR 09b, MÉR 09a] allows a relatively simple development of
sequential algorithms facilitating the expression of invariant and highlighting
a recursive analysis of the problem.

More conventionally, the Event B method is used to develop systems
integrating software components and requiring objective arguments to certify
their operation. J.-R. Abrial has designed a model of a mechanical
press [ABR 10a] for ensuring to maintain the security properties. Event B is
an effective engineering framework with a formal system and a set of
proof-based patterns development [ABR 10a, HOA 09a] and structures,
refinement charts [MÉR 11f]. Among the important studies, there are several
case studies like pacemaker modeling [MÉR 10b, MÉR 11e, SIN 11]
electric heart model [MÉR 11g, SIN 13, SIN 11] and medical protocols
[MÉR 11g, SIN 13, SIN 11]. Modeling related to the security issues as the
access control [BEN 07, BEN 10a] have also showed that the Event B
language is very flexible to integrate access control models as RBAC or
ORBAC. Finally, the development of Event B models [MÉR 11h, MÉR 11d]
can produce the code using integrated tools in the Rodin platform, which can
be further used for assembling the system.

10.7.2. Conclusion and perspectives

The Event B method is based on a powerful language based on set theory
and first order predicate calculus; it provides simple structures machines to
describe reactive systems. To some extent, it can be described in other
languages for reactive systems but refinement is a key concept that allows to
develop incrementally and safely complex models of relatively large size
systems like a mechanical press or a pacemaker. Furthermore, the tools have
matured in both the interface and the proof tools; they require some practice,
but with the proof assistant or the ProB animator, each sheds light on
developed models and contributes to the validation of models. At the end of
outlook, we believe that the treatment of time, probabilistic aspects of
systems integration languages less formal, proof-based patterns of

42 Formal Methods Applied to Complex Systems 2

development and case studies are points to explore, while now a development
tool [?] is freely available.AQ9

10.8. Bibliography

[ABR 96] ABRIAL J.-R., The B book - Assigning Programs to Meanings, Cambridge
University Press, 1996.

[ABR 03a] ABRIAL J.-R., CANSELL D., MÉRY D., “A mechanically proved and incremental
development of IEEE 1394 tree identify protocol.”, Formal Aspects of Computing, vol. 14,
no. 3, pp. 215–227, 2003.

[ABR 03b] ABRIAL J.-R., “Event based sequential program development: application to
constructing a pointer program”, ARAKI K., GNESI S., MANDRIOLI D. (eds.), FME,
Lecture Notes in Computer Science, Springer, vol. 2805, pp. 51–74, 2003.

[ABR 03c] ABRIAL J.-R., CANSELL D., “Click’n prove: interactive proofs within set theory”,
BASIN D.A., WOLFF B. (eds.), TPHOLs, Lecture Notes in Computer Science, Springer,
vol. 2758, pp. 1–24, 2003.

[ABR 10a] ABRIAL J.-R., Modeling in Event-B: System and Software Engineering,
Cambridge University Press, 2010.

[ABR 10b] ABRIAL J.-R., BUTLER M. J., HALLERSTEDE S., et al., “Rodin: an open toolset
for modelling and reasoning in Event-B”, STTT, vol. 12, no. 6, pp. 447–466, 2010.

[BAC 79] BACK R.J.R., “On correct refinement of programs”, Journal of Computer and
System Sciences, vol. 23, no. 1, pp. 49–68, 1979.

[BAC 89] BACK R.-J., KURKI-SUONIO R., “Decentralization of process nets with centralized
control”, Distributed Computing, vol. 3, no. 2, pp. 73–87, 1989.

[BAC 98] BACK R.-J., VON WRIGHT J., Refinement Calculus A Systematic Introduction,
Graduate Texts in Computer Science, Springer-Verlag, 1998.

[BEN 07] BENAISSA N., CANSELL D., MERY D., “Integration of security policy into system
modeling”, The 7th International B Conference – B2007, Besançon, France, January 2007.

[BEN 08] BENAISSA N., “Modelling attacker’s knowledge for cascade cryptographic
protocols”, BÖRGER E., BUTLER M., BOWEN J.P., et al. (eds.), First International
Conference on Abstract State Machines, B and Z – ABZ 2008, Lecture Notes in Computer
Science, Springer, London, United Kingdom, vol. 5238, pp. 251–264, 2008.

[BEN 09a] BENAISSA N., MÉRY D., “Cryptographic protocols analysis in Event B”,
Seventh International Andrei Ershov Memorial Conference “PERSPECTIVES OF SYSTEM
INFORMATICS” – PSI 2009, Lectures Notes in Computer Science, Springer-Verlag,
Novosibisrk, Russie, Fédération De, November 2009.

[BEN 09b] BENAISSA N., MÉRY D., “Cryptologic protocols analysis using proof-based
patterns”, Seventh International Andrei Ershov Memorial Conference "PERSPECTIVES
OF SYSTEM INFORMATICS" – PSI 2009, Lecture Notes in Computer Science, Springer-
Verlag, Novosibirsk, Russie, Fédération De, June 2009.

Event B 43

[BEN 09c] BENAISSA N., MÉRY D., “Développement combiné et prouvé de systèmes
transactionnels cryptologiques”, Approches Formelles dans l’Assistance au Développement
de Logiciels – AFADL 2009, Toulouse, France, January 2009.

[BEN 10a] BENAISSA N., La composition des protocoles de sécurité avec la méthode B
événementielle, PhD Thesis, Henri Poincaré University, Nancy I, May 2010.

[BEN 10b] BENAISSA N., MÉRY D., “Proof-based design of security protocols”, MAYR E.W.
(ed.), 5th International Computer Science Symposium in Russia, CSR 2010, Lecture Notes
in Computer Science, KAZAN, Russie, Fédération De, Farid Ablayev, Springer, vol. 6072,
pp. 25–36, June 2010.

[BJO 06a] BJORNER D., Software Engineering 1 Abstraction and Modelling, Texts in
Theoretical Computer Science. An EATCS Series, ISBN: 978-3-540-21149-5, Springer-
Verlag, 2006.

[BJO 06b] BJORNER D., Software Engineering 2 Specification of Systems and Languages,
Texts in Theoretical Computer Science. An EATCS Series, ISBN: 978-3-540-21150-1,
Springer-Verlag, 2006.

[BJO 06c] BJORNER D., Software Engineering 3 Domains, Requirements, and Software
Design, Texts in Theoretical Computer Science. An EATCS Series, ISBN: 978-3-540-
21151-8, Springer-Verlag, 2006.

[BJØ 07] BJØRNER D., HENSON M.C. (eds.), Logics of Specification Languages, EATCS
Textbook in Computer Science, Springer, 2007.

[CAN] CANSELL D., “Click’N’Prove”. Available at http://plateforme-qsl.loria.fr/click
%20n%20prove.php. AQ10

[CAN 07a] CANSELL D., MÉRY D., “The Event-B Modelling Method: Concepts and Case
Studies”, pp. 33–140, Springer, 2007. (see [BJØ 07])

[CAN 07b] CANSELL D., MÉRY D., REHM J., “Time constraint patterns for Event B
development”, JULLIAND J., KOUCHNARENKO O. (eds.), 7th International Conference of
B Users, January 17–19, 2007, of Lecture Notes in Computer Science, Besançon, France,
Springer-Verlag, vol. 4355, pp. 140–154, 2007.

[CHA 88] CHANDY K.M., MISRA J., Parallel Program Design A Foundation, ISBN 0-201-
05866-9, Addison-Wesley Publishing Company, 1988.

[CLA 00] CLARKE E.M., GRUNBERG O., PELED D.A., Model Checking, The MIT Press,
2000.

[CLE 02] CLEARSY, AIX-EN-PROVENCE (F), ATELIER B., 2002. Available at http://www.
atelierb.eu.

[CLE 04] CLEARSY, AIX-EN-PROVENCE (F), B4FREE, 2004. Available at http://www.
b4free.com.

[CLE 10] CLEARSY, AIX-EN-PROVENCE (F), BART, 2010. Available at http://www.
atelierb.eu.

44 Formal Methods Applied to Complex Systems 2

[COU 78] COUSOT P., Méthodes itératives de construction et d’approximation de points fixes
d’opérateurs monotones sur un treillis, analyse sémantique des programmes, PhD Thesis,
Scientific and Medical University of Grenoble, National Polytechnic Institute of Grenoble,
21 March 1978.AQ11

[COU 79] COUSOT P., COUSOT R., “Systematic design of program analysis frameworks”,
Proceedings Records of Sixth Proceedings of the Symposium on Principles of Programming
Languages, San Antonio, Texas, pp. 269–282, 1979.

[COU 92] COUSOT P., COUSOT R., “Abstract interpretation frameworks”, Journal of Logic
and Computation, vol. 2, no. 4, pp. 511–547, 1992.

[COU 00] COUSOT P., “Interprétation abstraite”, Technique et science informatique, vol. 19,
no. 1–2–3, pp. 155–164, January 2000.

[DIJ 76] DIJKSTRA E.W., A Discipline of Programming, Prentice-Hall, 1976.

[FLO 67] FLOYD R.W., “Assigning meanings to programs”, SCHWARTZ J.T. (ed.), Proc.
Symp. Appl. Math. 19, Mathematical Aspects of Computer Science,pp. 19–32, 1967.AQ12

[Hei] HEINRICH-HEINE-UNIVERSITÄT DÜSSELDORF, “The ProB animator and model
checker”. Available at http://www.stups.uni-duesseldorf.de/ProB.

[HOA 69] HOARE C.A.R., “An axiomatic basis for computer programming”,
Communications of the Association for Computing Machinery, vol. 12, pp. 576–580,
1969.

[HOA 09a] HOANG T.S., FURST A., ABRIAL J.-R., “Event-B patterns and their tool
support”, HUNG D.V., KRISHNAN P. (eds.), SEFM, IEEE Computer Society, pp. 210–219,
2009.

[HOA 09b] HOANG T.S., KURUMA H., BASIN D.A., et al., “Developing topology discovery
in Event-B”, Sci. Comput. Program., vol. 74, no. 11–12, pp. 879–899, 2009.

[HOL 97] HOLZMANN G., “The spin model checker”, IEEE Trans. on software engineering,
vol. 16, no. 5, pp. 1512–1542, May 1997.

[LAM 80] LAMPORT L., “Sometime is sometimes not never: a tutorial on the temporal logic
of programs”, Proceedings of the Seventh Annual Symposium on Principles of Programming
Languages, pp. 174–185, 1980.

[LAM 94] LAMPORT L., “A temporal logic of actions”, Transactions On Programming
Languages and Systems, vol. 16, no. 3, pp. 872–923, May 1994.

[LAM 02] LAMPORT L., Specifying Systems: The TLA++ Language and Tools for Hardware
and Software Engineers, Addison-Wesley, 2002.

[MCM 93] MCMILLAN K.L., Symbolic Model Checking, Kluwer Academic Publishers, 1993.

[MÉR 09a] MÉRY D., “A simple refinement-based method for constructing algorithms”, ACM
SIGCSE Bulletin, vol. 41, no. 2, pp. 51–59, June 2009.

[MÉR 09b] MÉRY D., “Refinement-Bbsed guidelines for algorithmic systems”, International
Journal of Software and Informatics, vol. 3, nos. 2–3, pp. 197–239, September 2009.

[MÉR 09c] MÉRY D., SINGH N.K., Pacemaker’s functional behaviors in Event-B, Research
report, University of Lorraine, 2009.

Event B 45

[MÉR 10a] MÉRY D., MOSBAH M., TOUNSI M., “Proving distributed algorithms by
combining refinement and local computations”, BENDISPOSTO J., LEUSCHEL M.,
ROGGENBACH M. (eds.), AVOCS 2010 10th International Workshop on Automated
Verification of Critical Systems, Dusseldorf, Allemagne, Germany, September 2010.

[MÉR 10b] MÉRY D., SINGH N.K., “Functional behavior of a cardiac pacing system”,
International Journal of Discrete Event Control Systems (IJDECS), December 2010. AQ13

[MÉR 10c] MÉRY D., SINGH N.K., Technical report on formal development of two-electrode
cardiac pacing system, Research report, University of Lorraine, February 2010.

[MÉR 10d] MÉRY D., SINGH N.K., “Trustable formal specification for software
certification”, MARGARIA T., STE B. (eds.), 4th International Symposium On Leveraging
Applications of Formal Methods – ISOLA 2010, of Lecture Notes in Computer Science,
Heraklion, Crete, Greece, Springer, vol. 6416, pp. 312–326, October 2010.

[MÉR 11a] MÉRY D., MOSBAH M., TOUNSI M., “Refinement-based verification of local
synchronization algorithms”, 17th International Symposium on Formal Methods, Lecture
Notes in Computer Science, Limerick, Irlande, Springer, June 2011.

[MÉR 11b] MÉRY D., SINGH N.K., “EB2C: a tool for Event-B to C conversion support”,
2011. Available at http://eb2all.loria.fr.

[MÉR 11c] MÉRY D., SINGH N.K., “Analysis of DSR protocol in Event-B”, 13th
International Symposium on Stabilization, Safety, and Security of Distributed Systems (SSS
2011), 2011.

[MÉR 11d] MÉRY D., SINGH N.K., “Automatic code generation from Event-B models”,
Proceedings of the 2011 Symposium on Information and Communication Technology
(SoICT), Hanoi, Vietnam, 2011.

[MÉR 11e] MÉRY D., SINGH N.K., “Formal development and automatic code generation:
cardiac pacemaker”, International Conference on Computers and Advanced Technology in
Education (ICCATE 2011), 2011.

[MÉR 11f] MÉRY D., SINGH N.K., “Formal specification of medical systems by proof-based AQ14
refinement,” ACM Transaction Embedded Computing Systems, 2011.

[MÉR 11g] MÉRY D., SINGH N.K., “Formalisation of the heart based on conduction of
electrical impulses and cellular-automata”, International Symposium on Foundations of
Health Information Engineering and Systems (FHIES 2011), 2011.

[MÉR 11h] MÉRY D., SINGH N.K., “A generic framework: from modeling to code”,
Fourth IEEE International workshop UML and Formal Methods (UML&FM’2011), (to
be appeared in special issue of ISSE NASA Journal, Innovations in Systems and Software
Engineering), 2011.

[MÉR 11g] MÉRY D., SINGH N.K., “Medical protocol diagnosis using formal methods”,
International Symposium on Foundations of Health Information Engineering and Systems
(FHIES 2011), 2011.

[MÉR 13] MÉRY D., MONAHAN R., “Transforming Event B models into verified C#
implementations”, LISITSA A., NEMYTYKH A.P. (eds.), VPT@CAV, of EPiC Series,
EasyChair, vol. 16, pp. 57–73, 2013.

46 Formal Methods Applied to Complex Systems 2

[MOR 90] MORGAN C., Programming from Specifications, Prentice Hall International Series
in Computer Science, Prentice Hall, 1990.

[MOS] MOSBAH M., “VISIDIA”. Available at http://visidia.labri.fr.

[REH 09] REHM J., Gestion du temps par le raffinement, PhD Thesis, Henri Poincaré
University, Nancy I, December 2009.

[SIN 11] SINGH N.K., Fiabilité et sûreté des systèmes informatiques critiques, University
Thesis, UHP, October 2011.AQ15

[SIN 13] SINGH N.K., Using Event-B for Critical Device Software Systems, Springer, 2013.

[TUR 49] TURING A., “On checking a large routine”, Conference on High-Speed Automatic
Calculating Machines, University Mathematical Laboratory, Cambridge, 1949.

AQ1: Should this be a different word? "Refinement is also called refinement" doesn't make sense.

AQ2: Please check if the edit in the sentence “The first form is a normal form in the sense” conveys the intended
meaning of the sentence.

AQ3: Please check the sentence ``�In our presentation, we emphasize” and correct if necessary.

AQ4: Please check the sentence for the edits made in it ``�The general form of proof obligation” and correct if
necessary.

AQ5: Please check the sentence ``We�have made a quite as classic” and correct if necessary.

AQ: Please provide the figures 10.2 and 103.

AQ7: Please check if the edit in the sentence “We will mention some applications developed” conveys the intended
meaning of the sentence.

AQ8: Please check the sentence ``These studies have” for clarity.

AQ9: Please check the “[]” given in the last sentence of the chapter and provided the reference citation if it is meant
for reference citation.

AQ10: Please provide the publication year of the references [CAN], [Hei] and [MOS], for correctness.

AQ11: Please check the translation of the university in the reference [COU 78] for correctness.

AQ12: Please provide the full form of the conference, etc. in references [FLO 67] and [HOA 09b].

AQ13: Please provide updation for ``in press” reference [MER 11d], [MER 11f] and [MER 11a]

AQ14: Provide the volume number and page range for [MER 10b].

AQ15: Please provide the complete name of the university for clarity.

