
The event-B Modelling MethodCon
epts and Case StudiesDominique Cansell1 and Dominique Méry2

1 LORIA, Campus s
ienti�que, BP 239, F�54506 Vandoeuvre-lés-Nan
y CEDEX,Fran
e (also: Université de Metz) Dominique.Cansell�loria.fr
2 LORIA, Campus s
ienti�que, & Université Henri Poin
aré Nan
y 1, BP 239,F�54506 Vandoeuvre-lés-Nan
y, Fran
e Dominique.Mery�loria.fr1 Introdu
tion1.1 Overview of BClassi
al B is a state-based method developed by Abrial for spe
ifying, design-ing and
oding software systems. It is based on Zermelo-Fraenkel set theorywith the axiom of
hoi
e. Sets are used for data modelling, Generalised Sub-stitutions are used to des
ribe state modi�
ations, the re�nement
al
ulus isused to relate models at varying levels of abstra
tion, and there are a numberof stru
turing me
hanisms (ma
hine, re�nement, implementation) whi
h areused in the organisation of a development. The �rst version of the B methodis extensively des
ribed in The B-Book [2℄. It is supported by the Atelier Btool [52℄ and by the B Toolkit [80℄.Central to the
lassi
al B approa
h is the idea of a software operationwhi
h will perform a

ording to a given spe
i�
ation if
alled within a givenpre-
ondition. Subsequent to the formulation of the
lassi
al approa
h, Abrialand others have developed a more general approa
h in whi
h the notion ofevent is fundamental. An event has a �ring
ondition (a guard) as opposedto a pre-
ondition. It may �re when its guard is true. Event based modelshave proved useful in requirement analysis, modelling distributed systemsand in the dis
overy/design of both distributed and sequential programmingalgorithms.After extensive experien
e with B,
urrent work by Abrial is proposingthe formulation of a se
ond version of the method [4℄. This distills experien
egained with the event based approa
h and provides a general framework forthe development of dis
rete systems. Although this widens the s
ope of themethod, the mathemati
al foundations of both versions of the method are thesame.

34 Dominique Cansell and Dominique Méry1.2 Proof-based DevelopmentProof-based development methods [2, 17, 88℄ integrate formal proof te
hniquesin the development of software systems. The main idea is to start with avery abstra
t model of the system under development. Details are gradu-ally added to this �rst model by building a sequen
e of more
on
rete ones.The relationship between two su

essive models in this sequen
e is that ofre�nement [2, 17, 19, 49℄. The essen
e of the re�nement relationship is thatit preserves already proved system properties in
luding safety properties andtermination.A development gives rise to a number of, so-
alled, proof obligations, whi
hguarantee its
orre
tness. Su
h proof obligations are dis
harged by the prooftool using automati
 and intera
tive proof pro
edures supported by a proofengine [52, 53℄.At the most abstra
t level it is obligatory to des
ribe the stati
 propertiesof a model's data by means of an invariant predi
ate. This gives rise to proofobligations relating to the
onsisten
y of the model. They are required toensure that data properties whi
h are
laimed to be invariant are preservedby the events or operations of the model. Ea
h re�nement step is asso
iatedwith a further invariant whi
h relates the data of the more
on
rete model tothat of the abstra
t model and states any additional invariant properties ofthe (possibly ri
her)
on
rete data model. These invariants, so-
alled gluinginvariants are used in the formulation of the re�nement proof obligations.The goal of a B development is to obtain a proved model. Sin
e the devel-opment pro
ess leads to a large number of proof obligations, the mastering ofproof
omplexity is a
ru
ial issue. Even if a proof tool is available, its e�e
tivepower is limited by
lassi
al results over logi
al theories and we must distributethe
omplexity of proofs over the
omponents of the
urrent development, e.g.by re�nement. Re�nement has the potential to de
rease the
omplexity of theproof pro
ess whilst allowing for tra
eability of requirements.B Models rarely need to make assumptions about the size of a systembeing modelled, e.g. the number of nodes in a network. This is in
ontrast tomodel
he
king approa
hes [51℄. The pri
e to pay is to fa
e possibly
omplexmathemati
al theories and di�
ult proofs. The re-use of developed models andthe stru
turing me
hanisms available in B help in de
reasing the
omplexity.Where B has been exer
ised on known di�
ult problems, the result has oftenbeen a simpler proof development than has been a
hieved by users of othermore monolithi
 te
hniques [87℄.1.3 S
ope of the B ModellingThe s
ope of the B method
on
erns the
omplete pro
ess of software andsystem development. Initially, the B method was mainly restri
ted to the de-velopment of software systems [22, 68, 76℄ but a wider s
ope for the methodhas emerged with the in
orporation of the event based approa
h [3, 4, 15, 33,

The event-B Modelling Method 3535, 101℄ and is related to the systemati
 derivation of rea
tive distributed sys-tems. Events are simply expressed in the ri
h syntax of the B language. Abrialand Mussat [15℄ introdu
e elements to handle liveness properties. The re�ne-ment of the event-based B method does not deal with fairness
onstraints butintrodu
es expli
it
ounters to ensure the happening of abstra
t events, whilenew events are introdu
ed in a re�ned model. Among
ase studies developedin B, we
an mention the METEOR proje
t [22℄ for
ontrolling train tra�
,the PCI proto
ol [38℄, the IEEE 1394 Tree Identify Proto
ol [12℄. Finally, Bhas been
ombined with CSP for handling
ommuni
ations systems [32, 33℄and with a
tion systems [35, 101℄.The proposal
an be
ompared to a
tion systems [18℄, UNITY pro-grams [49℄ and TLA [73℄ spe
i�
ations but there is no notion of abstra
tfairness like in TLA or in UNITY.1.4 Related Te
hniquesThe B method is a state-based method integrating set theory, predi
ate
al-
ulus and generalized substitution language. We brie�y
ompare it to relatednotations.Like Z [67, 102℄, B is based on the ZF set theory; both notations sharethe same roots, but we
an point to a number of interesting di�eren
es. Zexpresses state
hange by use of before and after predi
ates, whereas thepredi
ate transformer semanti
s of B allows a notation whi
h is
loser toprogramming. Invariants in Z are in
orporated into operation des
riptions andalter their meaning, whereas the invariant in B is
he
ked against the state
hanges des
ribed by operations and events to ensure
onsisten
y. Finally Bmakes a
areful distin
tion between the logi
al properties of pre-
onditionsand guards, whi
h are not
learly distinguished in Z.The re�nement
al
ulus used in B for de�ning the re�nement betweenmodels in the event-based B approa
h is very
lose to Ba
k's a
tion systems,but tool support for a
tion systems appears to be less me
hanized than B.TLA+ [74, 85℄
an be
ompared to B, sin
e it in
ludes set theory with the
ǫ operator of Hilbert. The semanti
s of TLA temporal operators is expressedover tra
es of states whereas the semanti
s of B a
tions is expressed in theweakest pre
ondition
al
ulus. Both semanti
s are equivalent with respe
t tosafety properties, but the tra
e semanti
s of TLA+ allows an expression offairness and eventuality properties that is not dire
tly available in B.VDM [60, 71℄ is a method with similar obje
tives to
lassi
al B. Like Bit uses partial fun
tions to model data, whi
h
an lead to meaningless termsand predi
ates e.g. when a fun
tion is a applied outside its domain. VDMuses a spe
ial three valued logi
 to deal with inde�niteness. B retains
lassi-
al two valued logi
, whi
h simpli�es proof at the expense of requiring more
are with inde�niteness. Re
ent approa
hes to this problem will be mentionedlater. ASM [36, 64, 97℄ and B share
ommon obje
tives related to the design

36 Dominique Cansell and Dominique Méryand the analysis of (software/hardware) systems. Both methods bridge thegap between human understanding and formulation of real-world problemsand the deployment of their
omputer-based solutions. Ea
h has a simple s
i-enti�
 foundation: B is based on set theory and ASM is based on the algebrai
framework with an abstra
t state
hange me
hanism. An Abstra
t State Ma-
hine is de�ned by a signature, an abstra
t state, a �nite
olle
tion of rulesand a spe
i�
 rule; rules provide an operational style very useful for modellingspe
i�
ation and programming me
hanisms. Like B, ASM in
ludes a re�ne-ment relation for the in
remental design of systems; the tool support of ASMis under development but it allows one to verify and to analyse ASMs. Inappli
ations, B seems to be more mature than ASM, even if ASM has severalreal su

esses like the validation [103℄ of Java and the Java Virtual Ma
hine.1.5 SummaryNext se
tions provide a short des
ription of event B:
• the B language and elements on the
lassi
al B method: syntax and se-manti
s of operations, events, assertions, predi
ates, ma
hines, models.
• the B modelling language and a simple introdu
tory example: event B,re�nement, proof-based development.
• other se
tions illustrate the event B modelling method by
ase studies:� Sequential algorithms.� Combining
oordination and re�nement for sorting.� Spanning trees algorithms.� A distributed leader ele
tion algorithm.
• Final se
tion
on
ludes the
hapter on the B modelling te
hniques and onongoing resear
hes.2 The B Language2.1 The B Language for Sets, Predi
ates and Logi
al Stru
turesThe development of a model starts by an analysis of the mathemati
al stru
-ture: sets,
onstants and properties over sets and
onstants and we produ
ethe mathemati
al lands
ape by requirements eli
itation. However, the state-ment of mathemati
al properties
an be expressed using di�erent assumedproperties; for instan
e, a
onstant n is a natural number and is supposed tobe greater than 3 -
lassi
ally and formally written like n ∈ N ∧ n ≥ 3 - or aset of persons is not empty -
lassi
ally and formally written like persons 6= ∅.Abrial et al [11℄ develop a stru
ture language whi
h allows to one to en
odemathemati
al stru
tures and their a

ompanying theorems. Stru
tures im-prove the possibility of me
hanized proofs but they are not yet in the
urrent

The event-B Modelling Method 37version of the B tools; there is a
lose
onne
tion with the stru
turing me
h-anisms and the algebrai
 stru
tures [59℄, but the main di�eren
e is in theuse of sets rather than of abstra
t data types. B mathemati
al stru
tures arebuilt with notations of set theory and we list the main notations (and theirmeanings) used in further subse
tions; the
omplete notation is des
ribed inthe B book of Abrial [2℄.Sets and Predi
atesConstants
an be de�ned using �rst order logi
 and set-theoreti
al nota-tions of B. A set
an be de�ned using either the
omprehension s
hema
{ x | x ∈ s ∧ P (x)}, or the Cartesian produ
t s
hema s × t or using operatorsover sets like power P(s) , interse
tion ∩ and union ∪. y ∈ s is a predi
atewhi
h
an be sometimes simpli�ed either from y ∈ { x | x ∈ s ∧ P (x)}into y ∈ s ∧ P (y), or from x 7→ y ∈ s × t into x ∈ s ∧ y ∈ t, orfrom t ∈ P(s) into ∀ x . (x ∈ t ⇒ x ∈ s) where x is a fresh variable. Apair is denoted either (x , y) or x 7→ y .A relation over two sets s and t is an element of P(s × t); a relation r hasa domain dom(r) and a
o-domain ran(r) . A fun
tion f from the set s to theset t is a relation su
h that ea
h element of dom(f) is related to at most oneelement of the set t.A fun
tion f is either partial f ∈ A 7→ B, or total f ∈ A → B→.Then, we
an de�ne the term f(x) for every element x in dom(f) using the
hoi
e fun
tion (f(x) = choice(f [{x}]) where f [{x}] is the subset of t, whoseelements are related to x by f . The
hoi
e fun
tion assumes that there existsat least one element in the set, whi
h is not the
ase of the ǫ operator that
an be applied to an empty set ∅ and returns some value. If x 7→ y ∈ f then
y = f(x) and f(x) is well de�ned, only if f is a fun
tion and x is in dom(f).We summarize in �gure 1, set-theoreti
al notations that
an be used inthe writing of formal de�nitions related to
onstants. In fa
t, the modellingof data is oriented by sets, relations and fun
tions; the task of the spe
i�er isthen to use e�e
tively those notations.A Simple Case StudySin
e we have a short spa
e for explaining B
on
epts, we use a very simple
ase study, namely the development of models for
omputing the factorialfun
tion; we
an illustrate the expressivity of the B language of predi
ates.Other
ase studies
an be found in
omplete work separately published (seefor instan
e, [2, 3, 9, 12, 13, 38, 42, 43℄). When
onsidering the de�nition of afun
tion, we
an use di�erent styles to
hara
terize it. A fun
tion is mathe-mati
ally de�ned as a (binary) relation over two sets,
alled sour
e and targetand it satis�es the fun
tionality property. The set-theoreti
al framework ofB invites us to follow this way for de�ning fun
tions; however, a re
ursivede�nition of a given fun
tion is generally used. The re
ursive de�nition states

38 Dominique Cansell and Dominique MéryName Syntax De�nitionBinary Relation s ↔ t P(s × t)Composition of relations r1; r2 {x, y |x ∈ a ∧ y ∈ b ∧
∃z.(z ∈ c ∧ x, z ∈ r1 ∧ z, y ∈ r2)}Inverse relation r−1 {x, y|x ∈ P(a) ∧ y ∈ P(b) ∧ y, x ∈ r}Domain dom(r) {a |a ∈ s ∧ ∃b.(b ∈ t ∧ a 7→ b ∈ r)}Range ran(r) dom(r−1)Identity id(s) {x, y|x ∈ s ∧ y ∈ s ∧ x = y}Restri
tion s � r id(s); rCo-restri
tion r � s r; id(s)Anti-restri
tion s ⊳− r (dom(r) − s) � rAnti-
o-restri
tion r ⊲− s r � (ran(r) − s)Image r[w] ran(w � r)Overriding q ⊳− r (dom(r) ⊳− q) ∪ rPartial Fun
tion s 7→ t {r | r ∈ s ↔ t ∧ (r−1; r) ⊆id(t)}Fig. 1. Set-theoreti
al notationsthat a given mathemati
al obje
t exists and that it is the least solution of a�xed-point equation. Hen
e, a �rst step of the B development proves that thefun
tion de�ned by a relation is the least �xed-point of the given equation.Properties of the fun
tion might be assumed, but we prefer to advo
ate a styleof fully proved development with respe
t to a minimal set of assumptions. The�rst step enumerates a list of basi
 properties
onsidered as axioms and the�nal step rea
hes a point where both de�nitions are proved to be equivalent.First, we de�ne the mathemati
al fun
tion factorial, in a
lassi
al way;the �rst line states that factorial is a total fun
tion from N into N and thenext lines state that factorial satis�es a �xed-point and, by default, it issupposed to be the least �xed-point. factorial is a B
onstant and has Bproperties :

factorial ∈ N −→ N ∧
factorial(0) = 1 ∧
∀n.(n ≥ 0 ⇒ factorial(n + 1) = (n + 1) × factorial(n))In previous work on B [40℄, we use this de�nition and write it as a B prop-erty (a logi
al assumption or an axiom of the
urrent theory) but nothingtells us that the de�nition is
onsistent and that it de�nes an existing fun
-tion. A solution is to de�ne the factorial fun
tion using a �xed-point s
hemasu
h that the factorial fun
tion is the least �xed-point of the given equa-tion over relations. The factorial fun
tion is the smallest relation satisfyingsome
onditions and espe
ially the fun
tionality; the fun
tionality is statedas a logi
al
onsequen
e of the B properties. The point is not new but weare able to introdu
e notions to students putting together �xed-point theory,set theory, theory of relations and fun
tions and the pro
ess of validation by

The event-B Modelling Method 39proof (me
hani
ally done by the prover). The
omputation of the factorialfun
tion starts by a de�nition of the factorial fun
tion whi
h is
arefully andformally justi�ed using the theorem prover. factorial is still a B
onstant butit is di�erently de�ned.The factorial fun
tion is a relation over natural numbers and it is de�nedby its graph over pairs of natural numbers:(AXIOMS OR B PROPERTIES)
factorial ∈ N ↔ N ∧
0 7→ 1 ∈ factorial ∧

∀(n, fn) ·





n 7→ fn ∈ factorial
⇒
n + 1 7→ (n + 1) × fn ∈ factorial



The factorial fun
tion satis�es the �xed-point equation and is the least�xed-point: (AXIOMS OR B PROPERTIES)
∀f ·













f ∈ N ↔ N ∧
0 7→ 1 ∈ f ∧
∀(n, fn).(n 7→ fn ∈ f ⇒ n + 1 7→ (n + 1) × fn ∈ f)

⇒
factorial ⊆ f











These last statements are B properties of the factorial fun
tion and fromthese B properties, we should derive the fun
tionality of the resulting least�xed-point: factorial is a fun
tion is a logi
al
onsequen
e of the new de�ni-tion of factorial. (CONSEQUENCES OR B ASSERTIONS)
factorial ∈ N −→ N ∧
factorial(0) = 1 ∧
∀n.(n ∈ N ⇒ factorial(n + 1) = (n + 1) × factorial(n))Now, factorial is proved to be a fun
tion and no assumption
on
ern-ing the fun
tionality is left unspe
i�ed or simply an assumption. Proofs are
arried out using the �rst order predi
ate
al
ulus together with set theoryand arithmeti
. When we have proved that factorial is a fun
tion, it meansthat every derived property is e�e
tively obtained by a me
hani
al pro
ess ofproof; the proof
an be reused in another
ase study, if ne
essary. The proof isan appli
ation of the indu
tion prin
iple; every indu
tive property mentions aproperty over values of the underlying stru
ture namely P(n); hen
e we shouldquantify over predi
ates and derive theorems in higher order logi
 [11℄. Usinga quanti�
ation over subsets of a set, we
an get higher order theorems. For in-stan
e, P(n) is represented by the following set {n|n ∈ NATURAL ∧ P(n)}

40 Dominique Cansell and Dominique Méryand the indu
tive property is stated as follows; the �rst expression is givenin the B language and the se
ond expression (equivalent to the �rst one) in
lassi
al mathemati
al notation (su

 denotes the su

essor fun
tion de�nedover natural numbers):B statement
∀P ·













P ⊆ N ∧
0 ∈ P ∧
succ[P] ⊆ P

⇒
N ⊆ P)













lassi
al logi
al statement
∀P ·













P(n) a property on N ∧
P(0) ∧
∀n ≥ 0 · (P(n) ⇒ P(n + 1))

⇒
∀n ≥ 0 · P(n)











The higher-order aspe
t is a
hieved by the use of set theory, whi
h o�ersthe possibility to quantify over all the subsets of a set. Su
h quanti�
ationgive indeed the possibility to
limb up to higher-order in a way that is alwaysframed.The stru
ture language introdu
ed by Abrial et al [11℄
an be useful toprovide the reuse of already formally validated properties. It is then
learthat the �rst step of our modelling pro
ess is an analysis of the mathemati-
al lands
ape. The analysis of properties is essential, when dealing with theinde�niteness of expressions and the work of Abrial et al [11℄ or the do
toralthesis of Burdy [31℄ propose di�erent ways to deal with this question. For in-stan
e, the existen
e of a fun
tion like factorial may appear obvious but thete
hnique of modelling might lead to silly models, if no proof of de�nitenessis done. The proof of the fun
tionality of fa
torial ne
essitates to instantiatethe variable P in the indu
tive property by the following set:
{n|n ∈ N ∧ 0..n � factorial ∈ 0..n −→ N}Now, we
onsider the stru
tures in B used for organizing axioms, de�ni-tions, theorems and theories.Logi
al Stru
tures in BThe B language of predi
ates denoted BP for expressing data and properties
ombine set theory and �rst order predi
ate
al
ulus with a simple arithmeti
theory. The B environment
an be used to derive theorems from axioms; Bprovides a simple way to express axioms and theorems using abstra
t ma-
hines without variables. It is a way to use the underlying B prover and toimplement the proof pro
ess that we have already des
ribed.An abstra
t ma
hine has a name m; the
lause SETS
ontains de�nitionsof sets in the problem; the
lause CONSTANTS allows one to introdu
e infor-mation related to the mathemati
al stru
ture of the problem to solve.

The event-B Modelling Method 41MACHINE
mSETS
sCONSTANTS
cPROPERTIES
P (s, c)ASSERTIONS
A(x)END

The
lause PROPERTIES
ontains the e�e
tivede�nitions of
onstants: it is very importantto list
arefully properties of
onstants in away that
an be easily used by the tool. The
lause ASSERTIONS
ontains the list of theo-rems to be dis
harged by the proof engine. Theproof pro
ess is based on the sequent
al
ulusand the prover provides (semi-)de
ision pro
e-dures [52℄ for proving the validity of a givenlogi
al fa
t
alled a sequent and allows one tobuild intera
tively the proof by applying pos-sible rules of sequent
al
ulus.For instan
e, the ma
hine FACTORIAL_DEF introdu
es a new
onstant
alled factorial satisfying given properties in the previous lines. The fun
tion-ality of factorial is derived from the assumptions in the
lause ASSERTIONS.MACHINE
FACTORIAL_DEFCONSTANTS
factorialPROPERTIES
factorial ∈ N ↔ N ∧
0 7→ 1 ∈ factorial ∧
∀(n, fn).(n 7→ fn ∈ factorial ⇒ n + 1 7→ (n + 1) × fn ∈ factorial) ∧

∀f ·













f ∈ N ↔ N ∧
0 7→ 1 ∈ f ∧
∀(n, fn).(n 7→ fn ∈ f ⇒ n + 1 7→ (n + 1) × fn ∈ f)

⇒
factorial ⊆ f











ASSERTIONS
factorial ∈ N −→ N ;
factorial(0) = 1 ;
∀n.(n ∈ N ⇒ factorial(n + 1) = (n + 1) × factorial(n))ENDThe intera
tive prover breaks a sequent into simpler-to-prove sequents butthe user must know the global stru
ture of the �nal proof. BP allows us tode�ne underlying mathemati
al stru
tures required for a given problem; nowwe should introdu
e how to spe
ify states and how to des
ribe transitions overstates.

42 Dominique Cansell and Dominique Méry2.2 The B Language of TransitionsThe B language is not restri
ted to
lassi
al set-theoreti
al notations and thesequent
al
ulus; it in
ludes notations for de�ning transitions over states of themodel,
alled generalized substitutions . In its simple form, x := E(x), a gen-eralized substitution looks like an assignment; the B language of generalizedsubstitutions
alled GSL (Generalized Substitution Language) (see �gure 2)
ontains synta
ti
al stru
tures for expressing di�erent kinds of (states) tran-sitions. Generalized substitutions of GSL allow us to write operations in the
lassi
al B approa
h [2℄; a restri
tion over GSL leads to events in the so
alledevent-based B approa
h [4, 15℄. In the following sub-subse
tions, we addressthe semanti
al issues of generalized substitutions and the di�eren
es betweenoperations and events.Generalized SubstitutionsGeneralized substitutions provide a way to express transformations of statevariables of a given model. In the
onstru
t x := E(x), x denotes a ve
tor ofstate variables of the model, and E(x) a ve
tor of expressions of the same sizeas the ve
tor x. The interpretation we shall give here to this statement is nothowever that of an assignment statement. The
lass of generalized substitu-tions
ontains the following possible forms of generalized substitutions:
• x := E (assignment).
• skip (stuttering).
• P |S (pre
ondition) (or pre P then S end).
• S2T (bounded
hoi
e) (or
hoi
e S1 or S2 END).
• P ⇒ S (guard) (or sele
t (orwhen) P then S end).
• @z.S (unbounded
hoi
e).
• x :∈ S (set
hoi
e), x : R(x0, x), x : |R(x0, x). (generalized assignment).
• S1; S2 (sequen
ing).
• while B do S invariant J variant V end.The meaning of a generalized substitution S is de�ned in the weakest-pre
ondition
al
ulus [57, 58℄ by the predi
ate transformer λP ∈ BP.[S]Pwhere [S]P means that S establishes P . Intuitively, it means that every a
-
epted exe
ution of S starting from a state s satisfying [S]P terminates in astate satisfying P ;
ertain substitutions
an be feasibly exe
uted (or a

eptedfor exe
ution) by any physi
al
omputational devi
e; it means also that Sterminates for every state of [S]P . The weakest-pre
ondition operator hasproperties related to impli
ation over predi
ates: λP ∈ BP.[S]P is monotoni
with respe
t to the impli
ation, it is distributive with respe
t to the
onjun
-tion of predi
ates. The properties of the weakest-pre
ondition operator areknown, sin
e the work of Dijkstra [57, 58℄ on the semanti
s de�ned by pred-i
ate transformers. The de�nition of λP ∈ BP.[S]P is indu
tively expressedover the syntax of B predi
ates and the syntax of generalized substitutions.

The event-B Modelling Method 43
[S]P
an be redu
ed to a B predi
ate, whi
h is used by the proof-obligationsgenerator. Figure 2
ontains the indu
tive de�nition of [S]P .Name Generalized substitution : S [S]PAssignment x := E P (E/x)Skip skip PParallel Composition x := E||y := F [x, y := E, F]PNon-deterministi
 x :∈ S ∀v.(v ∈ S ⇒ P (v/x))Choi
e in a SetRelational Assignment x : R(x0, x) ∀v.(R(x0, v) ⇒ P (v/x))Unbounded Choi
e @x.S ∀x.[S]PBounded Choi
e
hoi
e S1 or S2 end [S1]P ∧ [S2]P

(or equivalently S1[]S2)Guard sele
t G then T end G ⇒ [T]P
(or equivalently G =⇒ S2)Pre
ondition pre G then T end G ∧ [T]P
(or equivalently G|T)Generalized Guard any t where G ∀ t· (G ⇒ [T]P)then T endSequential S; T [S][T]PComposition Fig. 2. De�nition of GSL and [S]PWe say that two substitutions S1 and S2 are equivalent, denoted S1 = S2,if for any predi
ate P of the B language, [S1]P ≡ [S2]P . The relation de�nes away to
ompare substitutions. Abrial [2℄ proves a theorem for normalized formrelated to any substitution and it proves that a substitution is
hara
terizedby a pre
ondition and a
omputation relation over variables.Theorem 1. [2℄For any substitution S, there exists two predi
ates P and Q where x′ isnot free in P su
h that: S = P |@x′.(Q =⇒ x := x′).The theorem tells us the importan
e of the pre
ondition of a substitution,whi
h should be true, when the substitution is applied to the
urrent state, elsethe resulting state is not
onsistent with the transformation. Q is a relationbetween the initial state x and the next state x′. In fa
t, a substitution should

44 Dominique Cansell and Dominique Mérybe applied to a state satisfying the invariant and should preserve it. Intuitively,it means that, when one applies the substitution, one has to
he
k that theinitial state is
orre
t. The weakest-pre
ondition operator allows to de�nespe
i�

onditions over substitutions:
• Aborted
omputations: abt(S)

def
= for any predi
ate R,¬[S]R and it de-�nes the set of states that
an not establish any predi
ate R and that arethe non-terminating states .

• Terminating
omputations: trm(S)
def
= ¬abt(S) and it de�nes the termi-nation
ondition for the substitution S.

• Mira
ulous
omputations: mir(S)
def
= for any predi
ate R, [S]R and meansthat among states, some states may establish every predi
ate R, for in-stan
e FALSE, and they are
alled mira
ulous states, sin
e they establisha mira
le.

• Feasible
omputations: �s(S)
def
= ¬mir(S) Mira
ulous states
orrespondto non-feasible
omputations and the feasibility
ondition ensures that the
omputation is realisti
.Terminating
omputations and feasible
omputations play a
entral rolein the analysis of generalized substitutions. The �gures 3 and 4 provide twolists of rules for simplifying trm(S) and �s(S) into the B predi
ates language;both lists are not
omplete (see Abrial [2℄ for
omplete lists).For instan
e, �s(sele
t FALSE then x := 0 end) is FALSE andmir(sele
t FALSE then x := 0 end) is TRUE.The substitution sele
t FALSE then x := 0 end establishes any predi
ateand is not feasible. We
an not implement su
h a substitution in a program-ming language.A relational predi
ate
an be de�ned using the weakest-pre
ondition se-manti
s, namely prdx(S), by the expression ¬[S](x 6= x′) whi
h is the relation
hara
terizing the
omputations of S. The �gure 5
ontains a list of de�nitionsof the predi
ate with respe
t to the syntax.The next property is proved by Abrial and shows the relationship betweenweakest-pre
ondition and relational semanti
s. Predi
ates trm(S) and prdx(S)are respe
tively de�ned in �gure 3 and �gure 5.Theorem 2. [2℄For any substitution S, we have: S = trm(S)|@x′.(prdx(S) =⇒ x := x′)Both theorems emphasize the role of the pre
ondition and the relation inthe semanti
al de�nition of a substitution. The re�nement of two substitu-tions is simply de�ned using the weakest-pre
ondition
al
ulus as follows: S isre�ned by T (written S ⊑ T), if for any predi
ate P , [S]P ⇒ [T]P . We
angive an equivalent version of the re�nement that shows that it de
reases thenon-determinism. Let us de�ne the following sets: pre(S) = {x|x ∈ s∧trm(S)},

The event-B Modelling Method 45Generalized substitution : S trm(S)
x := E TRUE

skip TRUE

x :∈ S TRUE

x : R(x0, x) TRUE

@x.S ∀x.trm(S)
hoi
e S1 or S2 end trm(S1) ∧ trm(S2)
(or equivalently S1[]S2)sele
t G then T end G ⇒ trm(T)
(or equivalently G =⇒ S2)pre G then T end G ∧ trm(T)
(or equivalently G|T)any t where G then T end ∀ t· (G ⇒ trm(T))Fig. 3. Examples of de�nitions for trm(S)rel(S) = {x, x′|x ∈ s ∧ x′ ∈ s ∧ prdx(S)} and dom(S) = {x|x ∈ s ∧ �s(S)},where s is supposed to be the global set of states.The re�nement
an be de�ned equivalently using the set-theoreti
al ver-sions: S is re�ned by T , if, and only if, pre(S) ⊆ pre(T) and rel(T) ⊆ rel(S). We
an also use previous notations and de�ne equivalently the re�nement of twosubstitutions by the expression: trm(S) ⇒ trm(T) and prdx(T) ⇒ prdx(S).The predi
ate prdx(S) relates S to a relation over x and x′; it means that asubstitution
an be seen like a relation over pairs of states.The weakest-pre
ondition semanti
s over generalized substitutions pro-vides the semanti
al foundation of the generator of proof obligations; in thenext sub-subse
tions we introdu
e operations and events, whi
h are two waysto use the B method.

46 Dominique Cansell and Dominique MéryGeneralized substitution : S �s(S)
x := E TRUE

skip TRUE

x :∈ S S 6= ∅

x : R(x0, x) ∃v.(R(x0, v)

@x.S ∃x.�s(S)
hoi
e S1 or S2 end �s(S1) ∨ �s(S2)
(or equivalently S1[]S2)sele
t G then T end G ∧ �s(T)
(or equivalently G =⇒ S2)pre G then T end G ⇒ �s(T)
(or equivalently G|T)any t where G then T end ∃ t· (G ∧ �s(T))Fig. 4. Examples of de�nitions for �s(S)Operations and EventsGeneralized substitutions are used to
onstru
t operations of abstra
t ma-
hines or events of abstra
t models . Both notions will be detailed in the nextsubse
tion. However, we should explain the di�eren
e between those two no-tions. A (abstra
t) ma
hine is a stru
ture with a part de�ning data (SETS,CONSTANTS, PROPERTIES), a part de�ning state (VARIABLES,INVARIANT)and a part de�ning operations (OPERATIONS, INITIALISATION); it only givesits potential user the ability to a
tivate the operations, not to a

ess its statedire
tly and this aspe
t is very important for re�ning the ma
hine by making
hanges of variables and of operations, while keeping their names. An opera-tion has a pre
ondition and the pre
ondition should be true, when one
allsthe operation. Operations are
hara
terized by generalized substitutions and

The event-B Modelling Method 47Generalized substitution : S prd
x
(S)

x := E x′ = E

skip x′ = x

x :∈ S x′ ∈ S

x : R(x0, x) R(x, x′)

@z.S ∃z.prd
x
(S) if z 6= x′
hoi
e S1 or S2 end prd

x
(S1) ∨ prd

x
(S2)

(or equivalently S1[]S2)sele
t G then T end G ∧ prd
x
(T)

(or equivalently G =⇒ S2)pre G then T end G ⇒ prd
x
(T)

(or equivalently G|T)any t where G then T end ∃ t· (G ∧ prd
x
(T))Fig. 5. Examples of de�nitions for prd

x
(S)their semanti
s is based on the semanti
s of generalized substitutions (eitherin the weakest-pre
ondition-based style, or in the relational style). It meansthat the
ondition of preservation of the invariant (or proof obligation) issimply written as follows:

I ∧ trm(O) ⇒ [O]I (1)If one
alls the operation, when the pre
ondition is false, any state
anbe rea
hed and the invariant is not ensured. The style of programming is
alled generous but it assumes that an operation is always
alled when thepre
ondition is true. An operation
an have input and output parameters andit is
alled in a state satisfying the invariant and it is a passive obje
t, sin
eit requires to be
alled to have an e�e
t.

48 Dominique Cansell and Dominique MéryOn the other hand, an event has a guard and is triggered in a state vali-dating the guard. Both operation and event have a name, but an event has noinput and output parameters. An event is observed or not observed. and pos-sible
hanges of variables should maintain the invariant of the
urrent model:the style is
alled defensive. Like an operation, an event is
hara
terized bya generalized substitution and it
an be de�ned by a relation over variablesand primed variables: a before-after predi
ate denoted BA(e)(x, x′). An eventis essentially a rea
tive obje
t and rea
ts with respe
t to its guard grd(e)(x).However, there is a restri
tion over the language GSL used for de�ning eventsand we authorize only three kinds of generalized substitutions (see the �g-ure 6). In the de�nition of an event, three basi
 substitutions are used towrite an event (x := E(x), x : ∈ S(x), x : P (x0, x)) and the last substitutionis the normal form of the three ones. An event should be feasible and thefeasibility is related to the feasibility of the generalized substitution of theevent: some next state must be rea
hable from a given state. Sin
e events arerea
tive obje
ts, related proof obligations should guarantee that the
urrentstate satisfying the invariant should be feasible. The �gure 7
ontains the def-inition of guards of events. We leave the
lassi
al abstra
t ma
hines of the B
lassi
al approa
h and we illustrate the system modelling through events andmodels.When using the relational style for de�ning the semanti
s of events, we usethe style advo
ated by Lamport [73℄ in TLA; an event is seen as a transforma-tion between states before the transformation and states after the transfor-mation. Lamport uses the priming of variables to separate before values fromafter values. Using this notation and supposing that x0 denotes the valueof x before the transition of the event, events
an get a semanti
s de�nedover primed and unprimed variables in �gure 6. The before-after predi
ate isalready de�ned in the B book as the predi
ate prdx(S) de�ned for every sub-stitution S (see sub-subse
tion 2.2). S. Merz [85℄ introdu
es the TLA/TLA+modelling language in this volume.Any event e has a guard de�ning the enabledness
ondition over the
ur-rent state and it expresses the existen
e of a next state. For instan
e, thedisjun
tion of all guards is used for strengthening the invariant of a B sys-tem of events to in
lude the deadlo
k freedom of the
urrent model. Beforeto introdu
e B models, we give the expression stating the preservation of aproperty (or proof obligation) by a given event e:
I(x) ⇒ [e] I(x) (2)or equivalently in a relational style

I(x) ∧ BA(e)(x, x′) ⇒ I(x′) (3)
BA(e)(x, x′) is the before-after relation of the event e and I(x) is a statepredi
ate over variables x. The equation 1 states the proof obligation of the

The event-B Modelling Method 49Event : E Before-After Predi
atebegin x : P (x0, x) end P (x, x′)when G(x) then x : P (x0, x) end G(x) ∧ P (x, x′)any t where G(t, x) ∃ t· (G(t, x) ∧ P (x, x′, t))then x : P (x0, x, t) endFig. 6. De�nition of events and before-after predi
ates of eventsEvent : E Guard: grd(E)begin S end TRUEwhen G(x) then T end G(x)any t where G(t, x) then T end ∃ t· G(t, x)Fig. 7. De�nition of events and guards of eventsoperation O using the weakest-pre
ondition operator and the equation 3 de-�nes the proof obligation for the preservation of I(x), while e is observed.Sin
e the two approa
hes are semanti
ally equivalent, the proof-obligationsgenerator of the Atelier B
an be reused for generating those assertions in theB environment.The SELECT event is the previous notation for the WHEN event; bothare equivalent; however, the WHEN notation
aptures the idea of rea
tiv-ity of guarded events; B♯ [5, 69℄ will provide other notations for
ombin-ing events. The event-B notation is enri
hed by the following notation:begin x : | P (x0, x) end whi
h means that the value of the variable x is setto any value su
h that P (x0, x) where x0 is the value of x before the event. Inthe next subse
tion, we detail abstra
t ma
hines and abstra
t models, whi
hare using operations and events.

50 Dominique Cansell and Dominique Méry3 B Models3.1 Modelling SystemsSystems under
onsideration are software systems,
ontrol systems, proto
ols,sequential and distributed algorithms, operating systems,
ir
uits; they aregenerally very
omplex and have parts intera
ting with an environment. Adis
rete abstra
tion of su
h systems
onstitutes an adequate framework: su
han abstra
tion is
alled a dis
rete model. A dis
rete model is more generallyknown as a dis
rete transition system and provides a view of the
urrent sys-tem; the development of a model in B follows an in
remental pro
ess validatedby the re�nement. A system is modelled by a sequen
e of models related bythe re�nement and managed in a proje
t.A proje
t [2, 4℄ in B
ontains information for editing, proving, analysing,mapping and exporting models or
omponents. A B
omponent has twoseparate forms: a �rst form
on
erns the development of software models and B
omponents are abstra
t ma
hine, re�nement, implementation; a se
ond formis related to modelling rea
tive systems using the event-based B approa
h andB
omponents are simply
alled models. Ea
h form
orresponds to a spe
i�
approa
h for developing B
omponents; the �rst form is fully supported bythe B tools [52, 80℄ and the se
ond one is partly supported by tools [52℄. In thenext sub-subse
tions, we overview ea
h approa
h based on the same logi
aland mathemati
al
on
epts.Modelling Systems in the B Classi
al Approa
hThe B method [2℄ is histori
ally applied to software systems and has helpedin developing safe software
ontrolling trains [22℄. The s
ope of the methodis not restri
ted to the spe
i�
ation step but in
ludes fa
ilities for designinglarger models or ma
hines gathered in a proje
t. The basi
 model is
alledan abstra
t ma
hine and is de�ned in the A(bstra
t) M(a
hine) N(otation)language. We des
ribe an abstra
t ma
hine in the next �gure. An abstra
tma
hine en
apsulates variables de�ning the state of the system; the stateshould
onform to the invariant and ea
h operation should be
alled, whenthe
urrent state satis�es the invariant. Ea
h operation should preserve theinvariant, when it is
alled.An operation may have input/output parameters and only operations
an
hange state variables. An abstra
t ma
hine looks like a desk
al
ulator andea
h time a user presses the button of an operation, he should
he
k thatthe pre
ondition of the operation is true, else no preservation of invariant
anbe ensured (for instan
e, division by zero). Stru
turing me
hanisms will bereviewed in the sub-subse
tion 3.1. An abstra
t ma
hine has a name m; the
lause SETS
ontains de�nitions of sets; the
lause
onstants allows one tointrodu
e information related to the mathemati
al stru
ture of the problem

The event-B Modelling Method 51to solve and the
lause PROPERTIES
ontains the e�e
tive de�nitions of
on-stants: it is very important to list
arefully properties of
onstants in a waythat
an be easily used by the tool. We do not mention stru
turing me
ha-nisms like sees, in
ludes, extends, promotes, uses, imports but they
an helpin the management of proof obligations.MACHINE
mSETS
sCONSTANTS
cPROPERTIES
P (s, c)VARIABLES
xINVARIANT
I(x)ASSERTIONS
A(x)INITIALISATION
<substitution>OPERATIONS
<list of operations>END

The se
ond part of the abstra
t ma
hinede�nes dynami
 aspe
ts of state variablesand properties over variables using the gen-erally
alled indu
tive invariant and us-ing assertions generally
alled safety prop-erties . The invariant I(x) types the vari-able x, whi
h is assumed to be initializedwith respe
t to the initial
onditions andwhi
h is supposed to be preserved by op-erations (or transitions) of the list of op-erations. Conditions of veri�
ation
alledproof obligations are generated from thetext of the model using the �rst part forde�ning the mathemati
al theory and these
ond part is used to generate proof obli-gations for the preservation (when
allingthe operation) of the invariant and proofobligations stating the
orre
tness of safetyproperties with respe
t to the invariant.The �gure 8
ontains an example of an ab-stra
t ma
hine with only one operation set-ting the variable result to the value of the
factorial(m), with m a
onstant.Modelling Systems in the Event-based B Approa
hAbstra
t ma
hines are based on
lassi
al me
hanisms like the
all of opera-tion or the input/output me
hanisms. On the other hand, rea
tive systemsrea
ts to the environment with respe
t to external stimuli; abstra
t modelsof the event-based B approa
h intend to integrate the rea
tivity to stimuli bypromoting events rather than operations. Contrary to operations, events haveno parameters and there is no a

ess to state variables. At most one event isobserved at any time of the system.A (abstra
t) model is made up of a part de�ning mathemati
al stru
turesrelated to the problem to solve and a part
ontaining elements on state vari-ables, transitions and (safety and invarian
e) properties of the model. Proofobligations are generated from the model to ensure that properties are ef-fe
tively holding: it is
alled internal
onsisten
y of the model. A model isassumed to be
losed and it means that every possible
hange over state vari-ables is de�ned by transitions; transitions
orrespond to events observed by

52 Dominique Cansell and Dominique MéryMACHINE
FACTORIAL_MACCONSTANTS
factorial, mCONSTANTS
factorialPROPERTIES
m ∈ N ∧
factorial ∈ N ↔ N ∧

∀f ·

0

B

B

B

B

@

f ∈ N ↔ N ∧
0 7→ 1 ∈ f ∧
∀(n, fn).(n 7→ fn ∈ f ⇒ n + 1 7→ (n + 1) × fn ∈ f)

⇒
factorial ⊆ f

1

C

C

C

C

AVARIABLES
resultINVARIANT
result ∈ NASSERTIONS
factorial ∈ N −→ N ;
factorial(0) = 1 ;
∀n.(n ∈ N ⇒ factorial(n + 1) = (n + 1) × factorial(n))INITIALISATION
result :∈ NOPERATIONS
computation = begin result := factorial(m) endENDFig. 8. An example of an abstra
t ma
hine for the fa
torial
omputationthe spe
i�er. A model m is de�ned by the following stru
ture. A model has aname m; the
lause SETS
ontains de�nitions of sets of the problem; the
lauseCONSTANTS allows one to introdu
e information related to the mathemati
alstru
ture of the problem to solve and the
lause PROPERTIES
ontains the ef-fe
tive de�nitions of
onstants: it is very important to list
arefully propertiesof
onstants in a way that
an be easily used by the tool. Another point is thefa
t that sets and
onstants
an be
onsidered like parameters and extensionsof the B method exploit this aspe
t to introdu
e parametrization te
hniquesin the development pro
ess of B models. The se
ond part of the model de-�nes dynami
 aspe
ts of state variables and properties over variables usingthe invariant
alled generally indu
tive invariant and using assertions
alledgenerally safety properties. The invariant I(x) types the variable x, whi
h isassumed to be initialized with respe
t to the initial
onditions and whi
h ispreserved by events (or transitions) of the list of events.

The event-B Modelling Method 53Conditions of veri�
ation
alled proof obligations are generated from thetext of the model using the �rst part for de�ning the mathemati
al theory andthe se
ond part is used to generate proof obligations for the preservation ofthe invariant and proof obligations stating the
orre
tness of safety propertieswith respe
t to the invariant. The predi
ate A(x) states properties derivablefrom the model invariant. A model states that state variables are always in agiven set of possible values de�ned by the invariant and it
ontains the onlypossible transitions operating over state variables.A model is not a program and no
ontrol �ow is related to it; however,it requires a validation but we �rst de�ne the mathemati
s for stating sets,properties over sets, invariants, safety properties. Conditions of
onsisten
yof the model are
alled proof obligations and they express the preservation ofinvariant properties and avoidan
e of deadlo
k.MODEL
mSETS
sCONSTANTS
cPROPERTIES
P (s, c)VARIABLES
xINVARIANT
I(x)ASSERTIONS
A(x)INITIALISATION
<substitution>EVENTS
<list of events>END

Proof obligation(INV1) Init(x) ⇒ I(x)(INV2) I(x) ∧ BA(e)(x, x′) ⇒ I(x′)(DEAD) I(x) ⇒ (grd(e1) ∨ . . . grd(en))

e1, . . . , en is the list of events of the model
m. (INV1) states the initial
ondition whi
hshould establish the invariant. (INV2) shouldbe
he
ked for every event e of the model,where BA(e)(x, x′) is the before-after predi-
ate of e. (DEAD) is the
ondition of deadlo
k-freedom: at least one event is enabled.Finally, predi
ates in the
lause ASSERTIONS should be implied by thepredi
ates of the
lause INVARIANT; the
ondition is simply formalized asfollows:

P (s, c) ∧ I(x) ⇒ A(x)Finally, the substitution of an event must be feasible; an event is feasiblewith respe
t to its guard and the invariant I(x), if there is always a possibletransition of this event or equivalently, there exists a next value x′ satisfyingthe before-after predi
ate of the event. The feasibility of the initialisationevent requires that at least one value exists for the predi
ate de�ning the

54 Dominique Cansell and Dominique Méryinitial
onditions. The feasibility of an event leads to a readability of the formof the event; the re
ognition of the guard in the text of the event simpli�esthe semanti
al reading of the event and it simpli�es the translation pro
essof the tool: no guard is hidden inside the event. We summarize the feasibility
onditions in the next table.Event : E Feasibility : fis(E)

x : Init(x) ∃x · Init(x)begin x : P (x0, x) end I(x) ⇒ ∃x′ · P (x, x′)when G(x)then x : P (x0, x) end I(x) ∧ G(x) ⇒ ∃x′ · P (x, x′)any l where G(l, x)then x : P (x0, x, l) end I(x) ∧ G(l, x) ⇒ ∃x′ · P (x, x′, l)Proof obligations for a model are generated by the proof-obligations gen-erator of the B environment; the sequent
al
ulus is used to state the validityof the proof obligations in the
urrent mathemati
al environment de�ned by
onstants, properties. Several proof te
hniques are available but the prooftool is not able to prove automati
ally every proof obligation and intera
-tions with the prover should lead to prove every generated proof obligation.We say that the model is internally
onsistent when every proof obligation isproved. A model uses only three kinds of events, while the generalized sub-stitutions are ri
her; but the obje
tives are to provide a simple and powerfulframework for modelling rea
tive systems. Sin
e the
onsisten
y of a modelis de�ned, we should introdu
e the re�nement of models using the re�ne-ment of events de�ned like the substitution re�nement. We re
onsider theexample of the factorial fun
tion and its
omputation and we propose themodel of the �gure 9. As you noti
e, the abstra
t ma
hine fac and the ab-stra
t model fac are very
lose and the main di�eren
e is in the use of eventsrather than operations: the event computation eventually appears or is exe-
uted, be
ause of the properties of the mathemati
al fun
tion
alled factorial.The operation computation of the ma
hine in the �gure 8 is passive, but theevent computation of the model in the �gure 9 is rea
tive, when it is possible.Moreover, events may hide other ones and the re�nement of models will play a
entral role in the development pro
ess. We present in the next sub-subse
tion
lassi
al me
hanisms for stru
turing developed
omponents of spe
i�
ation.

The event-B Modelling Method 55MODEL
FACTORIAL_EV ENTSCONSTANTS
factorial, mCONSTANTS
factorialPROPERTIES
m ∈ N ∧
factorial ∈ N ↔ N ∧
0 7→ 1 ∈ factorial ∧
∀(n, fn).(n 7→ fn ∈ factorial ⇒ n + 1 7→ (n + 1) × fn ∈ factorial) ∧

∀f ·

0

B

B

B

B

@

f ∈ N ↔ N ∧
0 7→ 1 ∈ f ∧
∀(n, fn).(n 7→ fn ∈ f ⇒ n + 1 7→ (n + 1) × fn ∈ f)

⇒
factorial ⊆ f

1

C

C

C

C

AVARIABLES
resultINVARIANT
result ∈ NASSERTIONS
factorial ∈ N −→ N ;
factorial(0) = 1 ;
∀n.(n ∈ N ⇒ factorial(n + 1) = (n + 1) × factorial(n))INITIALISATION
result :∈ NEVENTS
computation = begin result := factorial(m) endENDFig. 9. An example of an abstra
t model for the fa
torial
omputationStru
turing Me
hanisms of the B MethodIn the last two sub-subse
tions, we have introdu
ed B models following the
lassi�
ation into two main
ategories abstra
t ma
hines and models ; both are
alled
omponents but they are not dealing with the same approa
h. We detailstru
turing me
hanisms of both approa
hes to be
omplete on referen
es ofwork on B.Sharing B ComponentsThe AMN notation provides
lauses related to stru
turing me
hanisms in
om-ponents like abstra
t ma
hines but also like re�nements or implementations.The B development pro
ess starts from basi

omponents mainly abstra
tma
hines and is layered development; the goal is to obtain implementation

56 Dominique Cansell and Dominique Méry
omponents through stru
turing me
hanisms like INCLUDES, SEES, USES,EXTENDS, PROMOTES, IMPORTS, REFINES. The
lauses INCLUDES, SEES,USES, EXTENDS, PROMOTES, IMPORTS, REFINES allow one to
ompose B
omponents in the
lassi
al B approa
h and every
lause leads to spe
i�

onditions for use. Several authors [30, 93℄ analyse the limits of existing Bprimitives to share data, while re�ning and
omposing B
omponents; it is
lear that the B primitives for stru
turing B
omponents
an be used follow-ing strong
onditions on the sharing of data and operations. The limits aremainly due to the reuse of already proved B
omponents; reuse of variables,invariants,
onstants, properties, operations. In fa
t, the problem to solve isthe management of interferen
es among
omponents and the seminal solu-tion of Owi
ki and Gries [91℄ fa
es the
ombinatorial explosion of the numberof proof obligations. The problem is to
ompose
omponents a

ording togiven
onstraints of
orre
tness. The new event-based B approa
h
onsidersa di�erent way to
ope with stru
turing me
hanisms and
onsiders only twoprimitives: the REFINES primitive and the DECOMPOSITION primitive.B Classi
al Primitives for Combining ComponentsWe fo
us on the meaning and the use of �ve primitives for sharing data andoperations among B
omponents, namely INCLUDES,SEES, USES, EXTENDS,PROMOTES. Ea
h primitive is related to a
lause of the AMN notation andallows a

ess to data or operations of already developed
omponents; spe
i�
proof obligations state
onditions to ensure a sound
omposition. A stru
tur-ing primitive makes a

essed
omponents visible under various degrees fromthe a

essing
omponent.The INCLUDES primitive
an be used in an abstra
t ma
hine or in a re-�nement; the in
luded
omponent allows the in
luding
omponent to modifyin
luded variables by in
luded operations; the in
luded invariant is preservedby the in
luding
omponent and is really used by the tool for deriving proofsof proof obligations of the in
luding
omponent. The in
luding
omponent
an not modify in
luded variables but it
an use them in read a

ess. No in-terferen
e is possible under those
onstraints. The USES primitives
an onlyappear in abstra
t ma
hines and using ma
hines have a read-only a

ess tothe used ma
hine, whi
h
an be shared by other ma
hines. Using ma
hines
an refer to shared variables in their invariants and data of the used ma
hineare shared among using ma
hines. When a ma
hine uses another ma
hine,the
urrent proje
t must
ontain another ma
hine in
luding the using and theused ma
hines. The re�nement is related to the in
luding ma
hine and theusing ma
hine
an not be re�ned. The SEES primitive refers to an abstra
tma
hine imported in another bran
h of the tree stru
ture of the proje
t andsets,
onstants and variables
an be
onsulted without
hange. Several ma-
hines
an see the same ma
hine. Finally, the EXTENDS primitive
an onlybe applied to abstra
t ma
hines and only one ma
hine
an extend a givenma
hine; the EXTENDS primitive is equivalent to the INCLUDES primitive

The event-B Modelling Method 57followed by the PROMOTES primitive for every operation of the in
luded ma-
hine. For instan
e, we
an illustrate the implementation and we
an showthat the implementation of the �gure 10 implements (re�nes) the ma
hineof the �gure 8. The operation computation is re�ned or implemented by awhile statement; proof obligations should take into a

ount the terminationof the operation in the implementation: the variant establishes the termina-tion. Spe
i�
 proof obligations are produ
ed to
he
k the absen
e of over�owof variables. IMPLEMENTATION
FACTORIAL_IMPREFINES
FACTORIAL_MACVALUES
m = 5CONCRETE_VARIABLES
result, xINVARIANT
x ∈ 0..n ∧
result = factorial(x)ASSERTIONS
factorial(5) = 120 ∧
result ≤ 120INITIALISATION
result := 1; x := 0OPERATIONS
computation =while x < m do

x := x + 1; fn := x × fninvariant
x ∈ 0..m
result = factorial(x)
result ≤ factorial(m)variant
m − xendENDFig. 10. An example of an implementation for the fa
torial
omputationOrganizing Components in a Proje
tThe B development pro
ess is based on a stru
ture de�ned by a
olle
tion of
omponents whi
h are either abstra
t ma
hines, re�nements or implementa-tions. An implementation
orresponds to a stage of development leading to

58 Dominique Cansell and Dominique Mérythe produ
tion of
odes when the language of substitutions is restri
ted tothe B0 language. The B0 language is a subset of the language of substitutionsand translation to C, C++ or ADA is possible in tools. The links between
omponents are de�ned by the B primitives previously mentioned and by there�nement.When building a software system, the development starts from a do
umentwhi
h may be written in a semi-formal spe
i�
ation language; the systemis de
omposed into subsystems and a model is progressively built using Bprimitives for
omposing B
omponents. We emphasize the role of stru
turingprimitives, sin
e they allow to distribute the global proof
omplexity. TheB development pro
ess
overs the
lassi
al life
y
le: requirements analysis,spe
i�
ation development, (formal) design and validation through the proofpro
ess and animation. K. Lano [75℄ illustrates an obje
t-oriented approa
h ofthe B development and it identi�es the layered development paradigm that wehave already mentioned through B primitives. Finally, implementations are B
omponents that are
lose to real
ode; in an implementation
omponent, anoperation
an be re�ned by a while loop and the
he
king should prove thatthe while loop is terminating.Stru
tures for the Event-based B Approa
hWhile the B
lassi
al approa
h is based on the B
omponents and B stru
-turing primitives, the event-based B approa
h promotes two
on
epts: the re-�nement of models and the de
omposition of models [4℄. As we have alreadymentioned, the
lassi
al B primitives have limits in the s
ope of their use; weneed mainly to manage sharing data but without generating too many proofobligations. So the main idea of Abrial is not to
ompose, but to de
ompose a�rst model and to re�ne models obtained after de
omposition step. The newproposed approa
h simpli�es the B method and fo
uses on the re�nement. Itmeans that previous development in the B
lassi
al approa
h
an be replayedin the event-based B one. Moreover, the foundations of B remain useful andusable in the
urrent environment of the Atelier B. In the next subse
tion, wedes
ribe the mathemati
al foundations of B and we illustrate B
on
epts inthe event-based B approa
h.Summary on Stru
turing Stru
turing Me
hanismsWe have reviewed stru
turing me
hanisms of the
lassi
al B approa
h andthe new ones proposed for the event-based B approa
h. While the
lassi-
al approa
h provides several me
hanisms for stru
turing ma
hines, only twome
hanisms supports the event-based approa
h. In fa
t, the
ru
ial point isto
ompose abstra
t models or abstra
t ma
hines; the limit of
omposition isrelated upon the produ
tion of a too high number of proof obligations. Thespe
i�er wants to share state variables in read and write mode; the stru
turingme
hanisms of
lassi
al B do not allow the sharing of variable, but in readmode. Our work on the feature intera
tion problem [39℄ illustrates the use of

The event-B Modelling Method 59re�nement for
omposing features and other approa
hes based on the dete
-tion of intera
tion by using a model
he
ker on �nite models, do not
ope theglobal problem be
ause of �nite models. Finally, we think that the
hoi
e ofevents with the re�nement provides a simple way to integrate proof into thedevelopment of
omplex systems and
onforms to the view of systems throughdi�erent abstra
tions, thanks to the stuttering [73℄. We have not mentionnedthe
lause DEFINITIONS whi
h providesg a way to introdu
e new de�nitionsin a model and whi
h is a ma
ro-expansion me
hanism.3.2 Proof-based Development in BRe�nement of B ModelsThe re�nement of a formal model allows one to enri
h a model in a step by stepapproa
h. Re�nement provides a way to
onstru
t stronger invariants and alsoto add details in a model. It is also used to transform an abstra
t model in amore
on
rete version by modifying the state des
ription. This is essentiallydone by extending the list of state variables (possibly suppressing some ofthem), by re�ning ea
h abstra
t event into a
orresponding
on
rete version,and by adding new events. The abstra
t state variables, x, and the
on
reteones, y, are linked together by means of a, so-
alled, gluing invariant J(x, y).A number of proof obligations ensure that (1) ea
h abstra
t event is
orre
tlyre�ned by its
orresponding
on
rete version, (2) ea
h new event re�nes skip,(3) no new event take
ontrol for ever, and (4) relative deadlo
kfreeness ispreserved. We detail proof obligations of a re�nement, while introdu
ing thesyntax of a re�nement in the �gure 11.A re�nement has a name r; it is a model re�ning a model m in the
lauseREFINES and m
an be a re�nement. New sets, new
onstants and new prop-erties
an be de
lared in the
lauses SETS, CONSTANTS or PROPERTIES.New variables y are de
lared in the
lause variables and are the
on
retevariables; variables x of the re�ned model m are
alled the abstra
t variables.The gluing invariant de�nes a mapping between abstra
t variables and
on-
rete ones; when a
on
rete event o

urs, there must be a
orresponding onein the abstra
t model: the
on
rete model simulates the abstra
t model. The
lause VARIANT
ontrols new events, whi
h
an not take the
ontrol overothers events of the system. In a re�nement, new events may appear and arere�ning an event skip; events of the re�ned model
an be strengthened andone should prove that the new model does not
ontain more deadlo
k
on�g-urations than the re�ned one: if a guard is strengthened too mu
h, it
an leadto a dead re�ned event.The re�nement r of a model m is a system; its tra
e semanti
s is based ontra
es of states over variables x and y and the proje
tion of
on
rete tra
eson abstra
t tra
es is a stuttering-free tra
es semanti
s of the abstra
t model.The mapping between abstra
t and
on
rete tra
es is
alled a re�nementmapping by Lamport [73℄ and the stuttering is the key
on
ept for re�ning

60 Dominique Cansell and Dominique MéryREFINEMENT
rREFINES
mSETS
tCONSTANTS
dPROPERTIES
Q(t, d)VARIABLES
yINVARIANT
J(x, y)VARIANT
V (y)ASSERTIONS
B(y)INITIALISATION
y : INIT (y)EVENTS
<list of events>ENDFig. 11. Syntax of a re�nement modelevents systems. When an event e of m is triggered, it modi�es variables y andthe abstra
t event re�ning e modi�es x. Proof obligations make pre
ise therelationship between abstra
t model and
on
rete model.The abstra
t system is m and the
on
rete system is r; INIT (y) denotesthe initial
ondition of the
on
rete model; I(x) is the invariant of the re�nedmodel m; BAC(y, y′) is the
on
rete before-after relation of an event of the
on
rete system r and BAA(x, x′) is the abstra
t before-after relation of theevent of the abstra
t system m; G1(x), . . .Gn(x) are the guards of the nabstra
t events of m; H1(y), . . . , Hk(y) are the guards of k
on
rete events of

r. Formally, the re�nement of a model is de�ned as follows:
• (REF1) INIT (y) ⇒ ∃x.(Init(x) ∧ J(x, y)) :The initial
ondition of the re�nement model imply that there exists anabstra
t value in the abstra
t model su
h that that value satis�es theinitial
onditions of the abstra
t one and implies the new invariant of there�nement model.

The event-B Modelling Method 61
• (REF2) I(x) ∧ J(x, y) ∧ BAC(y, y′) ⇒ ∃x′.(BAA(x, x′) ∧ J(x′, y′)) :The invariant in the re�nement model is preserved by the re�ned eventand the a
tivation of the re�ned event triggers the
orresponding abstra
tevent.
• (REF3) I(x) ∧ J(x, y) ∧ BAC(y, y′) ⇒ J(x, y′) :The invariant in the re�nement model is preserved by the re�ned eventbut the event of the re�nement model is a new event whi
h was not visiblein the abstra
t model; the new event re�nes skip.
• (REF4) I(x) ∧ J(x, y) ∧ (G1(x) ∨ . . . ∨ Gn(x)) ⇒ H1(y) ∨ . . . ∨ Hk(y) :The guards of events in the re�nement model are strengthened and we haveto prove that the re�nement model is not more blo
ked than the abstra
t.
• (REF5) I(x) ∧ J(x, y)) ⇒ V (y) ∈ N and
• (REF6) I(x) ∧ J(x, y) ∧ BAC(y, y′) ⇒ V (y′) < V (y) :New events should not blo
k forever abstra
t ones.The re�nement of models by re�ning events is
lose to the re�nementof a
tion systems [17℄, the re�nement of UNITY and the TLA re�nement,even if there is no expli
it semanti
s based on tra
es but one
an
onsiderthe re�nement of events like a relation between abstra
t tra
es and
on
retetra
es. The stuttering plays a
entral role in the global pro
ess of developmentwhere new events
an be added into the re�nement model. When one re�nesa model, one
an either re�ne an existing event by strengthening the guardor/and the before-after predi
ate (removing non-determinism), or add a newevent whi
h is supposed to re�ne the skip event. When one re�nes a modelby another one, it means that the set of tra
es of the re�ned model
ontainsthe tra
es of the resulting model with respe
t to the stuttering relationship.Models and re�ned models are de�ned and
an be validated through the proofsof proof obligations; the re�nement supports the proof-based development andwe illustrate it by a
ase study on the development of a program for
omputingthe factorial fun
tion.Proof-based Development in A
tionThe B language of predi
ates, the B language of events, the B language ofmodels and the B re�nement
onstitute the B method; however, the obje
tivesof the B method are to provide a framework for developing models and �nally

62 Dominique Cansell and Dominique Méryprograms. The development is based on proofs and should be validated bya tool. The
urrent version of Atelier B groups B models into proje
ts; aproje
t is a set of B models related to a given problem. The statement ofthe problem is expressed in a mathemati
al framework de�ned by
onstants,properties, stru
tures and the development of a problem starts from a veryhigh level model whi
h is simply stating the problem in an event-based style.The proof tool is
entral in the B method, sin
e it allows us to write modelsand to validate step-by-step ea
h de
ision of development; it is an assistantused by the user to integrate de
isions into the models, espe
ially by re�ningthem. The proof pro
ess is fundamental and the intera
tion of a user in theproof pro
ess is a very
riti
al point. We examine the di�erent aspe
ts ofthe development by an example. The problem is to
ompute the value ofthe factorial fun
tion for a given data n. We have already proved that the(mathemati
al) factorial fun
tion exists and we
an reuse its de�nition andits properties. Three su

essive models are provided by development, namely
Fac1 (the initial model stating in one-shot the
omputation of factorial(n)),
Fac2 (re�nement of the model Fac1
omputing step by step factorial(n)),
Fac3 (
ompleting the development of an algorithm for factorial(n)).We begin by writing a �rst model whi
h is re-phrasing the problem andwe simply state that an event is
al
ulating the value factorial(n) where n isa natural number. The model has only one event and is the one-shot model:
omputation =begin fn := factorial(n) end

fn is the variable
ontaining the value
omputed by the program; theexpression one-shot means that we show a solution just by assigning the valueof mathemati
al fun
tion to fn. It is
lear that the one-shot event is notsatisfa
tory, sin
e it does not des
ribe the algorithmi
 pro
ess for
omputingthe result. Proofs are not di�
ult, sin
e they are based on the propertiesstated in the preliminary part. Our next model will be a re�nement of Fa
1. Itwill introdu
e an iterative pro
ess of
omputation based on the mathemati
alde�nition of factorial. We therefore add a new event prog whi
h is extendingthe partial fun
tion under
onstru
tion
alled fac that
ontains a partialde�nition of the factorial fun
tion.progress =when n /∈ dom(fac) thenany x where
x ∈ N ∧ x ∈ dom(fac) ∧ x + 1 ∈ dom(fac)then
fac(x + 1) := (x + 1) ∗ fac(x)endend

The event-B Modelling Method 63The initialisation is simply to set fac to the value for 0: fac := {0 7→ 1}and there is a new event progress whi
h simulates the progress by adding thenext pair in the fun
tion fa
. Se
ondly, the event
omputation is re�ned by thefollowing event stating that the pro
ess stops when the fac variable is de�nedfor n.
omputation =when n ∈ dom(fac) then
fn := fac(n)endThe
omputation is based on the
al
ulation of the �xed-point of the equa-tion de�ning fa
torial and the ordering is the set in
lusion over domains offun
tions; fa
 is a variable satisfying the following invariant property:

fac ∈ N 7→ N ∧ fac ⊆ factorial ∧
dom(fac) ⊆ 0..n ∧ dom(fac) 6= ∅

fac is a relation over natural numbers and it
ontains a partial de�nitionof the factorial fun
tion; as long as n is not de�ned for fac, the
omputingpro
ess adds a new pair in fac. The system is deadlo
k-free, sin
e the dis-jun
tion of the guards n ∈ dom(fac), or n /∈ dom(fac) is trivially true. Theevent progress in
reases the domain of fa
: dom(fac) ⊆ 0..n. Proof obligationsfor the re�nement are e�e
tively proved by the proof tool:
n ∈ dom(fac) ∨
(n /∈ dom(fac) ∧
∃x.(x ∈ N ∧ x ∈ dom(fac) ∧ x + 1 /∈ dom(fac)))The model is more algorithmi
 than the �rst model and it
an be re�nedinto a third model
alled Fa
3
loser to the
lassi
al algorithmi
 solution. Twonew variables are introdu
ed: a variable i plays the role of index and a variablefq is an a

umulator. A gluing invariant de�ne relations between old and newvariables:

i ∈ N ∧ 0..i = dom(fac) ∧ fq = fac(i)The two events of the se
ond model are re�ned into the two next events.
omputation =when i = n then
fn := fqend progress =when i 6= n then

i := i + 1‖fq := (i + 1) ∗ fqend

64 Dominique Cansell and Dominique MéryProof obligations are
ompletely dis
harged with the proof tool and wederive easily the algorithm by analysing guards of the last model.begin
i := 0‖fq := 1while i 6= n do

i := i + 1‖fq := (i + 1) ∗ fqend ;endWe
an simplify the algorithm by removing the parallel operator and wetransform it as follows: begin
i := 0;
fq := 1;while i 6= n do

i := i + 1;
fq := i ∗ fq;end ;endCase studies provide information over the development pro
ess; di�erentdomains have been
onsidered for illustrating the event-based B approa
h:sequential programs [13, 43℄, distributed systems [10, 12, 38, 42℄,
ir
uits [84,95℄, information systems [46℄. In the next se
tions, we illustrate the event Bmodelling method by
ase studies:

• Sequential algorithms
• Combining
oordination and re�nement for sorting
• Spanning trees algorithms
• A distributed leader ele
tion algorithm4 Sequential Algorithms4.1 Primitive Re
ursive Fun
tionsThe Class of Primitive Re
ursive Fun
tionsIn the
omputability theory [98℄, the primitive re
ursive fun
tions
ontitutea stri
t sub-
lass of general re
ursive fun
tions also
alled the
lass or
om-putable fun
tions. Many
omputable fun
tions are primitive re
ursive as theaddition, the multipli
ation, the exponentiation, the sign, . . . ; in fa
t, a prim-itive fun
tion
orresponds to a bounded (for) loop and we show how to derivethe (for) algorithm from the de�nition of the primitive re
ursive fun
tion.

The event-B Modelling Method 65The primitive re
ursive fun
tions are de�ned by initial fun
tions (the 0-pla
e zero fun
tion ζ, the k-pla
e proje
tion fun
tion πi
k, the su

essor fun
-tion σ) and by two
ombining rules, namely the
omposition rule and theprimitive re
ursive rule. More pre
isely, we give the de�nition of fun
tionsand rules:

• ζ() = 0
• ∀i ∈ {1, . . . , k} : ∀x1, . . . , xk ∈ N : πi

k(x1, . . . , xk) = xi

• ∀x ∈ N : σ(n) = n + 1
• If g is a l-pla
e fun
tion, if h1, . . . , hl are n-pla
e fun
tions and if thefun
tion f is de�ned by:

∀x1, . . . , xn ∈ N : f(x1, . . . , xn) = g(h1(x1, . . . , xn), . . . , hl(xl, . . . , xn)),then f is obtained from g and h1, . . . , hl by
omposition.
• If g is a l-pla
e fun
tion, if h is a (l + 2)-pla
e fun
tion and if the fun
tion

f is de�ned by: ∀x1, . . . , xl, x ∈ N,
{

f(x1, . . . , xl, 0) = g(x1, . . . , xl)
f(x1, . . . , xl, x + 1) = h(x1, . . . , xl, x, f(x1, . . . , xl, x))

,then f is obtained from g and h by primitive re
ursion.A fun
tion f is primitive re
ursive, if it is an initial fun
tion or
an be gen-erated from initial fun
tions by some �nite sequen
e of the operations of
om-position and primitive re
ursion. A primitive re
ursive fun
tion is
omputedby an iteration and we de�ne a general framework for stating the developmentof fun
tions de�ned by primitive re
ursion using predi
ate diagrams.Modelling the Computation of a Primitive Re
ursive Fun
tionThe �rst step is to de�ne the mathemati
al fun
tion to
ompute the value of
f(u, v) where u and v are two natural numbers; the primitive re
ursive ruleis stated as follows:
• u, v, g, h, f are
onstants
orresponding to values and fun
tions.CONSTANTS

u, v, g, h, f

• u, v, g, h are supposed to be given.
• g, h are total and two primitive re-
ursive fun
tions.
• f is de�ned by a �xed-point-basedrule.PROPERTIES

u ∈ N ∧ v ∈ N ∧
g ∈ N −→ N ∧ h ∈ N × N × N −→ N ∧
f ∈ N × N −→ N ∧
∀ (a, b). ((a ∈ N ∧ b ∈ N) ⇒ (f(a, 0) = g(a))) ∧
∀ (a, b). ((a ∈ N ∧ b ∈ N) ⇒ (f(a, b + 1) = h(a, b, f(a, b))))

66 Dominique Cansell and Dominique MéryFrom the
hara
terization of the
onstants, the totality of f is derived,sin
e both g and h are total. The reader should be very
areful on the fun
-tional notation f(a, 0) whi
h intends to mean the fun
tional appli
ation butalso the membership (a, 0) ∈ f , when f is not yet proved to be fun
tional.The system uses three variables: two variables are the input values and thethird one is the output value: VARIABLES result.The required properties are the invarian
e of the INVARIANT
lause andthe partial
orre
tness of the system with respe
t to the pre and post
onditionsof the
omputation of the fun
tion de�ned by the primitive re
ursion rule. Theinvariant property is very simple to establish:The INVARIANT
lause is very simple for the �rst model and is in fa
t atyping invariant. The �rst model has only one visible event and others eventsare hidden by the stuttering step; the
omputation event models or simulatesthe
omputation of the resulting value and it simulates the end of a hiddenloop. INVARIANT
result ∈ NINITIALIZATION
result :∈ N

omputation =begin
result := f(u, v)endThe loop will appear in the further model whi
h is a re�nement of

primrec0:MODEL primrec0CONSTANTS u, v, g, h, fPROPERTIES
u ∈ N ∧ v ∈ N ∧
g ∈ N −→ N ∧ h ∈ N × N × N −→ N ∧
f ∈ N × N −→ N ∧
∀ (a, b). ((a ∈ N ∧ b ∈ N) ⇒ (f(a, 0) = g(a))) ∧
∀ (a, b). ((a ∈ N ∧ b ∈ N) ⇒ (f(a, b + 1) = h(a, b, f(a, b))))VARIABLES
resultINVARIANT
result ∈ NINITIALIZATION
result :∈ NEVENTS
omputation =begin

result := f(u, v)endEND

The event-B Modelling Method 67Iterative Computations from Primitive Re
ursionThe next model primrec1 (see �gure 12) is a re�nement of primrec0; it in-trodu
es a new event
alled step and step is simulating the progression of aniterative pro
ess satisfying a loop invariant.REFINEMENT primrec1REFINES primrec0VARIABLES cx, cy, cresult, resultINVARIANT
cx ∈ N ∧ cy ∈ N ∧ cresult ∈ N ∧
cx = u ∧ 0 ≤ cy ∧ cy ≤ v ∧ cresult = f(cx, cy)INITIALISATION
cx := u ‖ cy := 0 ‖ cresult := g(u) ‖ result :∈ NEVENTS
omputation =when

v − cy = 0then
result := cresultend ;step =when
v − cy 6= 0then
cy := cy + 1 ‖
cresult := h(cx, cy, cresult)endEND Fig. 12. Model primrec1The new system has two visible events:1. The �rst event
omputation intends to model the end of the iteration andit
on
retizes the event
omputation.2. The se
ond event step is the visible underlying step of the previous stut-tering step.The
omputation pro
ess is organized by the two guards of the two events;it leads us to the following algorithm, whi
h
aptures the essen
e of the lastB models. The �nal development in
ludes two B models related by the re-�nement relationship and provides an algorithm for
omputing the spe
i�edfun
tion. The resulting algorithm is
alled F and it uses the algorithms of gand h. The invariant is derived from the B model and does not need further

68 Dominique Cansell and Dominique Méryproofs. The development
an be instantiated with respe
t to fun
tions g and
h whi
h are supposed to be primitive re
ursive.pre
ondition : u, v ∈ Npost
ondition : result = f(u, v)lo
al variables: cx, cy, cresult ∈ N

cx := u;
cy := 0;
cresult := G(u);while cy ≤ v doInvariant : 0 ≤ cy ∧ cy ≤ v ∧ cx = u ∧ cresult = f [cx, cy]

cresult := H [cx, cy, cresult];
cy := cy + 1;;

result := cresult;Algorithm 1: Iterative algorithm F for
omputing the primitive re
ursive fun
-tion fApplying the Development for Addition, Multipli
ation,ExponentiationAdditionThe mathemati
al fun
tion addition is de�ned by the following rules:
∀x, y ∈ N :

{

addition(x, 0) = π1
1(x)

addition(x, y + 1) = σ(addition(x, y))
,We assign to g the primitive re
ursive fun
tion ζ and to h the primitivere
ursive fun
tion σ; the primre
 development
an be replayed. The result-ing algorithm is given by substituting g and h respe
tively by ζ and σ. Thealgorithm is denoted ADDITION .Multipli
ationThe mathemati
al fun
tion multiplication is de�ned by the following rules:

∀x, y ∈ N :

{

multiplication(x, 0) = ζ()
multiplication(x, y + 1) = addition(x, multiplication(x, y))

,We assign to g the primitive re
ursive fun
tion ζ() and to h the primitivere
ursive fun
tion addition; the primre
 development
an be replayed. Theresulting algorithm is given by substituting g and h respe
tively by π1
1 and

addition . The algorithm is denoted MULTIPLICATION .

The event-B Modelling Method 69pre
ondition : x, y ∈ Npost
ondition : result = ADDITION(x, y)lo
al variables: cx, cy, cresult ∈ N

cx := x;
cy := 0;
cresult := π1

1(x);while cy ≤ y doInvariant : 0 ≤ cy ∧ cy ≤ y ∧ cx = x∧
cresult = addition[cx, cy]

cresult := σ[cresult];
cy := cy + 1;;

result := cresult;Algorithm 2: Iterative algorithm ADDITION for
omputing the primitivere
ursive fun
tion additionpre
ondition : x, y ∈ Npost
ondition : result = multiplication(x, y)lo
al variables: cx, cy, cresult ∈ N

cx := x;
cy := 0;
cresult := ζ();while cy ≤ y doInvariant : 0 ≤ cy ∧ cy ≤ y ∧ cx = x∧

cresult = multiplication[cx, cy]

cresult := addition[cx, cresult];
cy := cy + 1;;

result := cresult;Algorithm 3: Iterative algorithm MULTIPLICATION for
omputing theprimitive re
ursive fun
tion multiplicationExponentiationThe mathemati
al fun
tion exponentiation is de�ned by the following rules:
∀x, y ∈ N :
{

exponentiation(x, 0) = σ(ζ())
exponentiation(x, y + 1) = multiplication(x, exponentiation(x, y))

,We assign to g the primitive re
ursive fun
tion σ(ζ()) (sin
e the
om-position of two primitive re
ursive fun
tions is still primitive re
ursive) andto h the primitive re
ursive fun
tion multiplication; the primre
 develop-ment
an be replayed. The resulting algorithm is given by substituting gand h respe
tively by σ(ζ()) and multiplication. The algorithm is denoted
EXPONENTIATION .

70 Dominique Cansell and Dominique Mérypre
ondition : x, y ∈ Npost
ondition : result = exponentiation(x, y)lo
al variables: cx, cy, cresult ∈ N

cx := x;
cy := 0;
cresult := σ(ζ());while cy ≤ y doInvariant : 0 ≤ cy ∧ cy ≤ y ∧ cx = x∧

cresult = exponentiation[cx, cy]

cresult := MULTIPLICATION [cx, cresult];
cy := cy + 1;;

result := cresult;Algorithm 4: Iterative algorithm EXPONENTIATION for
omputing theprimitive re
ursive fun
tion exponentiation4.2 Other Ways to Compute Addition and Multipli
ationIf we
onsider the development for the fun
tions addition and multiplication,we
an reuse the �rst model of ea
h one and improve the �nal resulting algo-rithms. We assume that the mathemati
al fun
tions are supported by the Bprover and we do not need to de�ne them. The proved models
an be reusedin other developments and we are going to re�ne, in a di�erent way, bothfun
tions.Developing a New Multipli
ation AlgorithmThe �rst model states the problem to solve namely the multipli
ation of twonatural numbers; the se
ond one provides the essen
e of the algorithmi
 so-lution and the last one implements naturals by sequen
es of digits. Let a and
b two naturals. The problem is to
ompute the value of the expression a∗,where ∗ is the mathemati
al fun
tion standing for natural multipli
ation. Thefun
tion multiplication is de�ned by an in�x operator ∗. The �rst model (see�gure 13) is a one-shot model
omputing in one step the result.Now, we should get an idea and apply it on the model multiplication0.There are several ways to de�ne the multipli
ation: either (a−1)∗b (primitivere
ursive fun
tion) or a∗b = (2∗a)∗(b/2). We
hoose the last one, sin
e it is thefaster one and simple to implement. We defvaluesine two new variables namely
cx et cy, for taking
are of initial values of a and b (values-passing me
hanism).The indu
tion step will be driven by B whi
h is stri
tly de
reasing. The newvariable M stores any value of cx when cy is odd.

The event-B Modelling Method 71MODEL multiplication0CONSTANTS
a, bPROPERTIES

a ∈ N ∧ b ∈ N ∧VARIABLES
x, y, mINVARIANT
x ∈ N ∧ y ∈ N ∧
x = a ∧ y = b ∧ m ∈ NINITIALISATION
x := a ‖ y := b ‖ m :∈ NEVENTS
omputation =begin

m := a ∗ bendENDFig. 13. Model multiplication0VARIABLES
cx, cy, x, y, M, mINVARIANT
cx ∈ N ∧ cy ∈ N ∧ M ∈ N ∧
cx ∗ cy + M = x ∗ yINITIALISATION
cx, cy, x, y, m :∈ (x = a ∧ y = b ∧ cx = a ∧ cy = b ∧ m ∈ N) ‖
M := 0The event computation o

urs, when cy is equal to 0. The gluing invariantallows us to
on
lude that M
ontains the value of a ∗ b.
omputation =when

(cy = 0)then
m := MendTwo new events prog1 and prog2 will help in the progression of cy towards

0.

72 Dominique Cansell and Dominique Méryprog1 =when
(cy 6= 0) ∧ even(cy)then
cx := cx ∗ 2 ‖ cy := cy/2endprog2 =when
(cy 6= 0) ∧ odd(cy)then
cx := cx ∗ 2 ‖
cy := cy/2 ‖
M := M + cxendWhere even(cy) = ∃x · (x ∈ N ∧ cy = 2 ∗ x) and odd(cy) = ∃x · (x ∈

N ∧ cy = 2 ∗ x + 1). The proofs are not hard; Atelier B generated 18 proofobligations only 3 are dis
harged intera
tively. Finally, we obtain the model
multiplication1 in the �gure 14.A further re�nement may lead to the implementation of natural numbersby sequen
es of digits; The division and the multipli
ation by two are imple-mented by shifting digits. On the other hand, one
an derive a well-knownalgorithm 5 for
omputing the multipli
ation fun
tion.Addition of Two Natural NumbersThe addition fun
tion
an also be redeveloped. The development is de
om-posed into three steps. The �rst step writes a one-shot model (see the �gure 15)
omputing in one step the required result, namely the addition of two naturalnumbers. Let a and b be two naturals. The problem is to
ompute the valueof the expression a+b, where + is the mathemati
al fun
tion standing for thenatural addition.The de�nition of a + b using a/2 (and b/2) is based on the followingproperties:

a b a + b
2 ∗ n 2 ∗ m 2 ∗ (n + m)
2 ∗ n 2 ∗ m + 1 2 ∗ (n + m) + 1

2 ∗ n + 1 2 ∗ m 2 ∗ (n + m) + 1
2 ∗ n + 1 2 ∗ m + 1 2 ∗ (n + m) + 2Using the four properties, we try to obtain a general indu
tion s
hema veri-�ed by variables and the four properties lead to the general form: (a+b)∗C+P .

The event-B Modelling Method 73REFINEMENT multiplication1REFINES multiplication0VARIABLES
cx, cy, x, y,M, mINVARIANT
cx ∈ N ∧
cy ∈ N ∧
M ∈ N ∧
cx ∗ cy + M = x ∗ yINITIALISATION
cx, cy, x, y,m :∈ (x = a ∧ y = b ∧ cx = a ∧ cy = b ∧ m ∈ N) ‖
M := 0EVENTS
omputation =when

(cy = 0)then
m := Mendprog1 =when
(cy 6= 0) ∧ even(cy)then
cx := cx ∗ 2 ‖ cy := cy/2endprog2 =when
(cy 6= 0) ∧ odd(cy)then
cx := cx ∗ 2 ‖
cy := cy/2 ‖
M := M + cxendEND Fig. 14. Re�nement model multiplication1The dis
overy of the relation is based on the analysis of possible transfor-mations over variables; Manna [81℄ has given hints for stating an indu
tiveassertion from properties over values of variables. Asso
iativity and the
om-mutativity of the mathemati
al addition justify the form. Moreover, the form
an also be justi�ed by the binary
oding of A and B as follows:

n
X

i=0

Ai2
i

!

+

n
X

i=0

Bi2
i

!

=
n
X

i=0

(Ai + Bi) 2i (4)

74 Dominique Cansell and Dominique Mérypre
ondition : a, b ∈ Npost
ondition : m = multiplication(x, y)lo
al variables: cx, cy, x, y, m, M ∈ N

x := a;
y := b;
cx := x;
cy := y;
M := 0;while cy 6= 0 doInvariant : 0 ≤ M ∧0 ≤ cy∧cy ≤ y∧cx∗cy+M = x∗y∧x = a∧y = bif (cy 6= 0) ∧ even(cy) then

cx := cx ∗ 2||cy := cy/2;if (cy 6= 0) ∧ odd(cy) then
cx := cx ∗ 2||cy := cy/2||M := M + cx;;

m := M ;Algorithm 5: New Iterative algorithm MULTIPLICATION for
omputingthe primitive re
ursive fun
tion multiplicationMODEL addition0CONSTANTS
a, bPROPERTIES

a ∈ N ∧
b ∈ N ∧VARIABLES
x, y, resultINVARIANT
x ∈ N ∧ y ∈ N ∧ result ∈ N

x = a ∧ y = bINITIALISATION
x := a ‖ y := b ‖ result :∈ NEVENTS
omputation =begin

result := a + bendENDFig. 15. Model addition0 for the addition

The event-B Modelling Method 75
n
X

i=0

(Ai + Bi) 2i =

n
X

i=1

Ai2
i−1

!

+

n
X

i=1

Bi2
i−1

!!

.2 + (A0 + B0) (5)

n
X

i=0

Ai2
i

!

+

n
X

i=0

Bi2
i

!

=

n
X

i=1

Ai2
i−1

!

+

n
X

i=1

Bi2
i−1

!!

.2+(A0 +B0) (6)The last equation 6 tells us that we obtain a binary addition of the lastdigits of the two numbers and we have to store powers of 2, while
omputing.Two new variables are introdu
ed: C for storing the powers of 2 and P forstoring the partial result. We derive the following invariant and the initial
onditions:VARIABLES
A, B, P, a, b, p, CINVARIANT
A ∈ N ∧ B ∈ N ∧ P ∈ N ∧ C ∈ N ∧
(A + B) ∗ C + P = a + bINITIALISATION
a, b, A, B, p : (a ∈ N ∧ b ∈ N

∧ p ∈ N ∧ P ∈ N ∧ C ∈ N ∧ A = a ∧ B = b) ||
P, C := 0, 1

add =when
(B = 0) ∧ (A = 0)then
p := Pend ;

The one-shot event of the previousmodel is then re�ned by the next event;the result is in the variable P , when Aand B are two variables
ontaining 0.Four new events are added to the
ur-rent model; ea
h event
orresponds toa
ase of properties given in the arrayabove.Four new events are introdu
ed in this model:
prog1 =when

even(A) ∧ even(B)then
A := A/2 || B := B/2 ||
C := 2 ∗ Cend ;

prog2 =when
odd(A) ∧ even(B)then
A := A/2 || B := B/2 ||
C := 2 ∗ C || P := C + Pend ;

76 Dominique Cansell and Dominique Méry
prog3 =when

even(A) ∧ odd(B)then
A := A/2 || B := B/2 ||
C := 2 ∗ C || P := C + Pend ;

prog4 =when
odd(A) ∧ odd(B)then
A := A/2 || B := B/2 ||
C := 2 ∗ C || P := 2 ∗ C + PendWe have to
ode basi
 operations for
omputing C+P , 2∗C and 2∗C+P .

C + P is solved by storing a 1 digit in the
orresponding lo
ation. 2 ∗ C isa shifting operation. 2 ∗ C + P is solved by managing a
arry. Now, we
anre�ne the
urrent model.Managing the CarryThe goal of the
arry is to implement the basi
 operation 2 ∗ C + P ; P is
on
retized by the store Q and the
arry R.VARIABLES
A, B, Q, R, a, b, p, CINVARIANT
Q ∈ N ∧ R ∈ N ∧ (R = 0 ∨ R = 1) ∧ P = C ∗ R + QINITIALISATION
a, b, A, B, p : (a ∈ N ∧ b ∈ N ∧ C ∈ N ∧ A = a ∧ B = b) ||
p :∈∈ N

Q, R, C := 0, 0, 1The re�ned event add uses the new variables Q and C. The gluing invariant(thanks to it) maintains the relationship over P and the new variables.
add = when (B = 0) ∧ (A = 0) then p := C ∗ R + Q end ;Events prog1, prog2, prog3, prog4 are re�ned and modi�ed by introdu
ingthe two new variables. The new variables are modi�ed a

ording to P .

prog1 =when
even(A) ∧ even(B)then
A := A/2 || B := B/2 || R := 0
Q := C ∗ R + Q || C := 2 ∗ Cend ;

The event-B Modelling Method 77
prog4 =when

odd(A) ∧ odd(B)then
A := A/2 || B := B/2 || R := 1
Q := C ∗ R + Q || C := 2 ∗ Cend

prog2 =when
odd(A) ∧ even(B)then
A := A/2 || B := B/2 ||if R = 0 then

Q := C + Qend ||
C := 2 ∗ Cend ;

prog3 =when
even(A) ∧ odd(B)then
A := A/2 || B := B/2 ||
C := 2 ∗ C ||if R = 0 then
Q := C + Qendend ;This model is validated by the tool Atelier B [52℄ whi
h generate 56 proofobligations and 15 are dis
har
hed intera
tively. Details are in
rementallyadded; ea
h model provides a view of the
omputing fun
tion. The modelsare related by the re�nement relationship and the last model
an now bere�ned to produ
e
odes.Produ
tion of CodesThe re�nement pro
ess leads to basi
 operations over natural numbers that
an be implemented by operations over bits. The B language provides se-quen
es but experien
e shows that proofs are harder when sequen
es are usedin a given model and we use the following de�nitions of sequen
es:SETS bit = {ZERO, ONE}CONSTANTS codePROPERTIES

code ∈ N × Z −→ (Z 7→ bit) ∧
∀k · (k ∈ Z ⇒ code(0, k) = ∅ ∧
∀(n, k) · (n ∈ N ∧ n 6= 0 ∧ k ∈ Z ⇒

code(2 ∗ n, k) = {k 7→ ZERO} ∪ code(n, k + 1)) ∧
∀(n, k) · (n ∈ N ∧ k ∈ Z ⇒

code(2 ∗ n + 1, k) = {k 7→ ONE} ∪ code(n, k + 1))) ∧
∀(n, k, x) · (n ∈ N ∧ k ∈ Z ∧ x ∈ dom (code(n, k)) ⇒ x ≥ k)

78 Dominique Cansell and Dominique MéryThe re
ursive de�nition is validated by our previous works [40℄ on thedevelopment of re
ursive fun
tions using the B event-based method. We havede�ned s
hemas allowing to evaluate those fun
tions. A sequen
e is
oded byan integer interval. For instan
e, we give an example of the se
ond modelof the multipli
ation: shifting of digits is implemented by an insertion of 0at the head of the sequen
e; removing a bit at the head
orresponds to themultipli
ation by 2. Questions on the reusability and the de
omposition ofsystems remain to be solved and will be part of further works making themethod more pra
ti
al.VARIABLES
A, B, P, a, b, p, cA, cB, kA, kBINVARIANT
kA ∈ Z ∧
kB ∈ Z ∧
cA ∈ Z 7→ bit ∧
cA = code(A, kA) ∧
cB ∈ Z 7→ bit ∧
cB = code(B, kB)

prog1 =when (cB 6= ∅) ∧ cB(kB) = ZERO thenif cA 6= ∅ then
cA := {kA − 1 7→ ZERO} ∪ cA || kA := kA − 1end ||

cB := {kB} ⊳− cB || kB := kB + 1 || A := 2 ∗ A || B := B/2end
prog2 =when (cB 6= ∅) ∧ cB(kB) = ONE thenif cA 6= ∅ then

cA := {kA − 1 7→ ZERO} ∪ cA || kA := kA − 1end ||
cB := {kB} ⊳− cB || kB := kB + 1 ||
A := 2 ∗ A || B := B/2 || M := M + AendThe
oding allows us to implement the addition C +Q, sin
e C is a powerof two and sin
e C is greater than Q:
code(C + Q, 0) = code(C, 0) ⊳− code(Q, 0).

The event-B Modelling Method 79These properties (and other ones) are really proved in another B ma
hineusing only the PROPERTIES and ASSERTIONS
lauses like in the work onstru
ture [11℄. Atelier B generated 10 proof obligations whi
h are dis
hargedintera
tively.We
an give a re�nement of the addition but only two events are reallygiven. cp is the
ode of p, cQ the
ode of Q and cC the
ode of C.
add =when cB = ∅ ∧ cA = ∅ thenif R = 1 then cp := cC ⊳− cQelse cp := cQendend

prog1 =when cB(kB) 6= ONE ∧ cA(kA) 6= ONE then
cB := {kB} ⊳− cB || kB := kB + 1 ||
cA := {kA} ⊳− cA || kA := kA + 1||
cC := {0 7→ ZERO} ∪ shift(cC) || R := 0 ||if R = 1 then cQ := cC ⊳− cQ endendThe fun
tion shift shifts any value of a sequen
e (to begin always by 0).Atelier B generated 95 proof obligations and 53 are dis
har
hed intera
tivelybut we
an do better using the assertion
lauses.A stronger re�nement
an now be obtained from the
urrent developedmodel. A
oding on �nite sequen
e of bits (bs + 1)
onstrains the abstra
t
ode to
ontain a bounded number of bits. We
onsider the natural numbers

a and b are
odable and we obtain a
on
rete
ode for variables A and B,namely CA and CB.
CA, CB : (

CA ∈ 0..bs → bit ∧
CA = code(a, 0) ∪ ((0..bs) − dom (code(a, 0))) × {ZERO} ∧
CB ∈ 0..bs → bit ∧
CB = code(b, 0) ∪ ((0..bs) − dom (code(b, 0))) × {ZERO})A variable K plays the role of kA and kB and the pro
ess halts, when kis bs + 1. The gluing invariant for variables A, B, p and Q (Cp and CQ arethe
on
rete
ode) is the following one:

80 Dominique Cansell and Dominique Méry
K ∈ 0..bs + 1 ∧ K = kA ∧ K = kB ∧ LO ∈ −1..K − 1 ∧
CA ∈ 0..bs → bit ∧
((K..bs) � CA) = cA ∪ ((K..bs) − dom (cA)) × {ZERO} ∧
CB ∈ 0..bs → bit ∧
((K..bs) � CB) = cB ∪ ((K..bs) − dom (cB)) × {ZERO} ∧
Cp ∈ 0..bs + 1 → bit ∧ CQ ∈ 0..bs → bit ∧
(0..LO � CQ = cQ) ∧ (LO ≥ 0 ⇒ CQ(LO) = ONE) ∧
∀i · (i ∈ (LO + 1)..bs ⇒ CQ(i) = ZERO)Where LO is a new variable; it is the position of the last ONE in CQ.Events add and prog1 are re�ned in the following
on
rete events:

add =when K = bs + 1 thenif R = 1 then Cp := CQ ⊳−{bs + 1 7→ ONE}else Cp := CQ ⊳−{bs + 1 7→ ZERO}endend ;

prog1 =when K ≤ bs ∧ CB(K) 6= ONE ∧ CA(K) 6= ONE then
K := K + 1 || R := 0 ||if R = 1 then CQ(K) := ONE || LO := K endend ;We have to express that the
oding of the result is in 0..bs + 1 → bit andthat it might have an over�ow. Multipli
ation by two (K := K + 1), divisionby 2 (K := K + 1) and addition (CQ(K) := ONE) are implemented usingthis
oding. Atelier B generated 81 proof obligations and 25 are dis
har
hedintera
tively.Properties of ModelsIn the model of the �gure 16, we have proved all properties used on theabstra
t
oding. Two indu
tion theorems are also proved in this ma
hine (these
ond and third assertion).4.3 Design of Sequential AlgorithmsThe design of a sequential algorithm starts by the statement of the spe
i�-
ation of the algorithm; the spe
i�
ation of the algorithm is expressed by apre
ondition over input data, a post
ondition over output data and a rela-tion between input and output data.The extension of the guarded
ommands

The event-B Modelling Method 81MODEL CodeSETS bit = {ZERO, ONE}CONSTANTS divtwo, code, power2, suc, shift, pred1PROPERTIESDe�nition of divtwo
divtwo ∈ N → N ∧ ∀x · (x ∈ N ⇒ divtwo(x) = x/2) ∧De�nition of suc (su

essor)
suc ∈ N → N ∧ ∀x · (x ∈ N ⇒ suc(x) = x + 1) ∧De�nition of code
code ∈ N × Z → (Z ↔ bit) ∧
∀k · (k ∈ Z ⇒ code(0, k) = ∅) ∧
∀(n, k) · (n ∈ N ∧ n 6= 0 ∧ k ∈ Z ⇒

code(2 ∗ n, k) = {k 7→ ZERO} ∪ code(n, k + 1)) ∧
∀(n, k) · (n ∈ N ∧ k ∈ Z ⇒

code(2 ∗ n + 1, k) = {k 7→ ONE} ∪ code(n, k + 1))) ∧De�nition of power2 (2n), pred1 (prede
essor) and shift (shift
ode)
power2 ∈ N → N ∧ power2(0) = 1 ∧
∀k · (k ∈ N ⇒ power2(k + 1) = 2 ∗ power2(k)) ∧
pred1 ∈ Z → Z ∧ ∀x · (x ∈ Z ⇒ pred1(x) = x − 1) ∧
shift ∈ (Z 7→ bit) → (Z 7→ bit) ∧ ∀y · (y ∈ Z 7→ bit ⇒ shift(y) = (pred1; y))ASSERTIONS
∀c · (c ∈ N ⇒ ∃y · (y ∈ N ∧ (c = 2 ∗ y ∨ c = 2 ∗ y + 1)));A number c is odd or even
∀P · (P ⊆ N ∧ 0 ∈ P ∧ suc[P] ⊆ P ⇒ N ⊆ P);It's the re
urren
e theorem. P is the set of all value whi
h satify a property
∀K · (K ⊆ N ∧ 0 ∈ K ∧ divtwo−1[K] ⊆ K ⇒ N ⊆ K);It's another re
urren
e theorem, like P (n/2) ⇒ P (n) ..
∀(n, k, x) · (n ∈ N ∧ k ∈ Z ∧ x ∈ dom (code(n, k)) ⇒ x ≥ k);All value in dom (code(n, k)) are greater or equals than k

code ∈ N × Z → (Z 7→ bit);Now a
ode is a partial fun
tion
∀n · (n ∈ N ⇒ power2(n) > 0);

2n is always greater than 0

∀(n, c, k) · (n ∈ N ∧ c ∈ N ∧ power2(n) > c ∧ k ∈ Z ⇒
code(power2(n) + c, k) = code(power2(n), k) ⊳− code(c, k));It's our property to implement the addition

∀(n, k, x) · (n ∈ N ∧ k ∈ Z ∧ x ∈ dom (shift(code(n, k))) ⇒ x > k);
∀(n, k) · (n ∈ N ∧ k ∈ Z ⇒ shift(code(n, k)) = code(n, k + 1))A useful property of shift (it's now a shift)
∀n · (n ∈ N ⇒ code(power2(n), 0) = (0..n − 1) × ZERO ∪ {n 7→ ONE})A property whi
h evaluates the
ode of 2nend Fig. 16. Model for deriving proofs on the abstra
t
oding

82 Dominique Cansell and Dominique Mérylanguage by C. Morgan [88℄ allowsone to initiate a development by re�ne-ment a

ording to a set of rules. However, no me
hani
al tool allows one to
he
k the re�nement; the notation x : [pre, post] intends to mean a statementwhi
h is
orre
t with respe
t to the pre and post
onditions. It is exa
tlythe
ase, when one starts an event-B development, sin
e one should state amagi
al event whi
h is
orre
t with respe
t to the pre and post
onditions.If we
onsider x : [pre, post] and if we assume that x is free in pre and post,
x : [pre, post] is a statement whi
h may modify x but only x and whi
h satis-�es the HOARE triple: {pre} x : [pre, post] {post}.An equivalent event is de�ned as follows:event =any zwhere

pre(x) ∧ post(x, z)then
x := zendWe have illustrated the event B method by simple sequential algorithmsand we have emphasized the possibility to reuse the previous development. Inthe next se
tion, we developed a sorting algorithm.5 Combining Coordination and Re�nement for SortingThe
oordination paradigm improves the development of
on
urrent/distributedsolutions, be
ause it provides simple way to
ommuni
ate between pro
essesvia a data stru
ture
alled a tuple spa
e. Coordination prin
iples and event-driven system development prin
iples
an be fruitfully
ombined to developsystems and to analyse the development of di�erent solutions of a given prob-lem. Bene�ts are inherited from both frameworks: the B event-driven approa
hprovides the re�nement and the
oordination framework provides a simple
omputation model. The sorting problem is redeveloped in the B event-drivenmethod using
oordination prin
iples for algorithms and two programmingparadigms are applied ie merging and splitting list to sort.5.1 Introdu
tionOverview The
oordination paradigm [47, 100℄ improves the development of
on
urrent/distributed solutions, be
ause it provides simple way to
ommuni-
ate between pro
esses via a data stru
ture
alled a tuple spa
e. Coordination

The event-B Modelling Method 83and event-driven system development
an be fruitfully
ombined to
onstru
tsequential re
ursive programs and to analyse the development of di�erent so-lutions of a given problem, namely the sorting problem. The
ombination ex-ploits the fundamental re�nement relationship de�ned in the B event-drivenapproa
h [12, 13, 38℄ and leads to a pra
ti
al framework for addressing theanalysis of programs development.Coordination The
oordination paradigm appears in di�erent program-ming environments as LINDA [47, 100℄; the main idea is really simple: a
ol-le
tion of pro
esses or agents
an
ooperate,
ommuni
ate and ex
hange datathrough a unique stru
ture
alled a tuple spa
e. A tuple spa
e is a heap that
an
ontains items and several operations are authorized to pro
esses, namelyto put an item in the tuple spa
e, to withdraw an item or to
onsult. Imple-mentation details are hidden. Any programming language
an be extended byspe
i�
 operations related to the tuple spa
e, as for instan
e the C LINDAenvironment whi
h extends the C programming language. The
oordinationparadigm fo
uses on the development of a
tivities that are inherently
on
ur-rent and that are simply made
oherent through the
oordination primitives.As soon as a
oordination program is written, tools as
ompilers provide atranslation into a lower level whi
h manages
ommuni
ations; it means that
ommuni
ations are used without toil, sin
e we do not take
are how
om-muni
ations are really implemented. The
oordination
omputation model isdeveloped in the GAMMA [20℄ model and a kernel of a methodology relatedto the proof if given; Chaudron [50℄ de�nes a re�nement in a language of
o-ordination for GAMMA
lose to te
hniques of bisimulation. We do not de�nenew re�nements. The CHAM (Chemi
al Abstra
t Ma
hine) is a
hemi
al viewof the
oordination
omputation model. However, even if GAMMA intends topromote the methodologi
al aspe
ts of programming development, nothing is
learly studied for the relationship with the re�nement of events systems.Integration of
oordination and event-driven systems Event-driven sys-tems are in
rementally derived from a very abstra
t model into a �nal
on
retemodel through re�nement steps. The B event-driven te
hnique is based on thevalidation by proof of ea
h re�nement step and it starts by a system analysiswhere mathemati
al details are
arefully analysed and proved or disprovedby the proof tool. The idea is to add the
oordination primitives as eventswhi
h modify the tuple spa
e an to get for free a re�nement in the
oordina-tion framework. A
onsequen
e is to provide a way to exe
ute event-drivensystems as
oordinative events set and to allows the re�nement of general
o-ordinative stru
tures. This exer
ise fo
uses on the use of both te
hniques foranalysing the sorting problem; we apply two main sorting paradigm namelythe splitting (qui
ksort) or the merging. Finally, we obtain a �nal
on
retemodel whi
h is a sequential algorithm using a sta
k and whi
h gives a nonre
ursive algorithm in the qui
ksort family.The
oordination paradigm was introdu
ed and implemented in LINDA [47,100℄ and a C LINDA
ompiler was e�e
tively developed. The original ideais to syn
hronise pro
esses or agents through a shared data spa
e
alled a

84 Dominique Cansell and Dominique Mérytuple spa
e, using spe
i�
 primitives extending the programming language.The programming language
an be C, SML or a Prolog-like one;
oordinationprimitives manage
ommuni
ation among pro
esses or agents. Coordinationis information-driven and makes intera
tion proto
ols simple and expressive.For instan
e, the implementation of Galibert [62℄ provides a simple way toprogram in C++ and to use a powerful high performant
omputer namelythe Origin 2000 SGI. Here, we use
oordination as a simple way to statea
tions on data; it is a less stru
tured approa
h
ontrary to
lassi
al program-ming languages. Every abstra
t model (in the B event-based approa
h)
anbe transformed into a
oordinative program; however, we re�ne as mu
h aspossible to obtain a sequential algorithm.When one write a
oordinative program, one has to identify pro
esses oragents of the system; pro
esses are expressed in a programming notation andthe
oordination framework allows to state
ommuni
ations between pro
essesthrough the tuple spa
e. Coordination primitives in
ludes the reading of avalue in the tuple spa
e, the writing of a value in the tuple spa
e, the waitingof a value in the tuple spa
e, . . . Events play the r�le of a
tions of agents orpro
esses and
ooperate to the global
omputation, if any.5.2 A Famous Case Study: the Sorting ProblemSorting a list of values means that one tries to �nd a permutation of valuessu
h that the resulting list is sorted. We de�ne two
onstants, f and m, withthe following properties:
m ∈ N ∧
f ∈ 1..m ֌ Nf stands for the abstra
t array whi
h
ontains m natural numbers. Allelements of the list are di�erent. The variable g initially set to the initialvalue f of the list,
ontains the sorted list in an as
ending way. The invariantmust state that values are preserved between g and f. The invariant holds atthe beginning, sin
e g = f ; the unique event of the system is sorting and itsorts in one step g.INVARIANT

g ∈ 1..m −→ N ∧ran(g) = ran(f)

sorting =begin
g : N ∧ran(g) = ran(f)∧
∀x.(x ∈ 1..m − 1 ⇒ g(x) ≤ g(x + 1))endWe know that there is one (and only one) permutation for sorting the list.The event sorting is then enabled. The simpli
ity of the sorting event allows

The event-B Modelling Method 85us to derive the
orre
tness of the abstra
t system. The sorting is done inone step, whi
h may seem to be magi
al. The abstra
t system is re�ned intoanother event system whi
h implements a sorting te
hnique as for instan
ethe qui
ksort, the merge sort, The main idea is to use the
oordinationparadigm to remove the re
ursiveness of the solution. The �rst abstra
t modelis
alled BASIC-SORTING.5.3 Applying Two Sorting ParadigmsThe previous system is an abstra
t view of the sorting pro
ess and sortingalgorithms are based on spe
i�
 paradigms leading to well known solutions.In our
ase, we
onsider two paradigms:
• merging two sorted lists to produ
e a sorted list: merge sortsand insertion sorts use the basi
 te
hnique of merging two sorted lists; theway for
ombining sorted lists may be di�erent and the size of the twolist may be also di�erent. The insertion sort
ombines a list with only oneelement and any other sorted list. The Von Neuman sort
ombines two listshaving the same size. Nevertheless, the basi
 te
hnique is the merging oftwo sorted lists and the global pro
ess in
rements the size of intermediatelists, whi
h is a termination
ondition.
• splitting a list into two lists to obtain two partitioned lists:on the
ontrary, a list
an be splitted into two lists su
h that elementsof the �rst list are smaller than elements of the se
ond one; the famousqui
ksort is an appli
ation of the paradigm; the introdu
tion of the pivot isvery important for the
omplexity of the sort. The sele
tion sort is anotherexample of sorting te
hnique and is an extreme
ase of the qui
ksort - ie thepivot is the extreme left or right position in the splitted list. The pro
ess
onverge to a list of one-element sorted lists, whi
h are
orre
tly lo
ated.The
oordination paradigm provides us a
omputation model and we usethe event-driven paradigm for de�ning operations on the tuple spa
e. The datastru
tures are supported by the tuple spa
e. A list is de�ned as an intervalover the set of dis
rete values 1..m where m is a
onstant of the problem. Aninterval
ontains su

essive values, when non empty. An interval is a subsetof 1..m with
onse
utive values and intervals are a partition of 1..m. Theinvariant will be strengthened to take into a

ount properties of intervalslater.For the moment, the following invariant says that the tuple spa
e TS isa partition of 1..m; operations on the tuple spa
e are expressed by eventsmodifying the variable TS:

TS ⊆ P(1..m)∧
∀I.(I ∈ TS ⇒ I 6= ∅) ∧

86 Dominique Cansell and Dominique Méry
∀(I, J).(

I ∈ TS ∧ J ∈ TS ∧ I 6= J
⇒

I ∩ J = ∅
) ∧

∀i.(i ∈ 1..m ⇒ ∃I.(I ∈ TS ∧ i ∈ I))The re�nement of the
urrent model BASIC_MODEL leads us either tosplit intervals, or to
ombine intervals; we obtain two possible re�ned models:
• MERGE-SORT merging two intervals to produ
e an interval : the sortingpro
ess will stop when only one interval is remaining in the tuple spa
e.
• SPLIT-SORT splitting an interval into two intervals : the splitting sort-ing will stop when no more splitting will be possible.We give no more details about the way intervals are
hosen, sin
e thesedetails may appear later in the re�nement pro
ess. Both models are still tore�ne to detail operations of merging and splitting. No implementation detailis addressing the problem of parallel exe
ution, sin
e it is an abstra
t model.Bottom Up Pro
ess MERGE-SORTThe bottom up pro
ess
ombines intervals by maintaining the invariant of thesorting problem. The merging of two intervals assumes that the restri
tion ofg on ea
h interval is sorted. The property is added to the previous invariant

∀(i, j).(i ∈ I ∧ j ∈ I ∧ i ≤ j ⇒ g(i) ≤ g(j)))Initial
onditions state that the tuple spa
e
ontains only intervals withone element; there is an interval for every possible values of 1..m; g is set tothe initial value of the list to sort.Init =begin
g := f ‖ TS := {x|x ⊆ 1..m ∧ ∃i.(i ∈ 1..m ∧ x = i..i)}endWe re
all that the merge pro
ess stops, when only one interval is in thetuple spa
e and it
ontains only 1..m. Using the invariant we
an prove thatg is sorted. The re�ned sorting event is

The event-B Modelling Method 87sorting =when 1..m ∈ TS thenskipend ;The sorting pro
ess is detailed in a way that identi�es intermediate statesof the variable g; these intermediate states state that the set of intervals is
onverging towards a unique interval modelling the sorted list. A progressevent is de�ned to model the
omputation of a merging step. The new event
merge_progress withdraws two intervals from TS and deposits a new intervalwhi
h is the merging of the two withdrawn intervals in TS. The merging oftwo intervals de
rements the number of intervals and helps in the
onvergen
eof the pro
ess. merge_progress =any I, J , gp where

I ∈ TS ∧
J ∈ TS ∧
I 6= J ∧
gp ∈ I ∪ J −→ N ∧ran(gp) = ran((I ∪ J) � g)
∀(i1, i2).(

i1 ∈ I ∪ J ∧
i2 ∈ I ∪ J ∧
i1 ≤ i2
⇒

gp(i1) ≤ gp(i2))then
g := g ⊳− gp ‖
TS := TS − {I, J} ∪ {I ∪ J}endThe model is not yet the merging sort, sin
e it is not e�
iently imple-mented. However, the essen
e of the merging sort is expressed in the
urrentmodel.Further re�nements introdu
e details to obtain di�erent sorting algorithmsbased on the merging paradigm, as the merging sort, the insertion sort or theVon Neumann sort. At this point, we not really an interval, sin
e I ∪ J isnot ne
essarily an interval, but a further re�nement will be able to
hooseadequately intervals to satisfy that
onstraint.

88 Dominique Cansell and Dominique MéryTop Down SPLIT-SORTThe qui
ksort is based on a strategy of de
omposition
alled splitting list andthe re�nement of the model basi
_sorting adds a new invariant expressingthe states of intervals resulting from splitting them. The �nal goal is to obtaina tuple spa
e
ontaining only intervals with one element. Remember that thequi
ksort splits an interval into two intervals in a way su
h that elements ofthe �rst interval are smaller than elements of the se
ond one. The invariantis strengthened by the property, that intervals
an be sorted with respe
t totheir values.
∀(I, J).(

I ∈ TS ∧ J ∈ TS ∧ I 6= J
⇒

(∀(i, j).(
i ∈ I ∧ j ∈ J ∧ i < j
⇒

g(i) ≤ g(j))))When two numbers are in an interval, values between those two values arealso in the interval.
∀I.(

I ∈ TS
⇒

(∀(i, j).(
i ∈ I ∧ j ∈ I
⇒

i..j ⊆ I)))Initial
onditions satisfy the invariant by setting a unique interval into thetuple spa
e: only 1..m is in the tuple spa
e.The split pro
ess starts in a tuple spa
e with only one interval and halts,when every interval i..i (for every value i in 1..m) is in the tuple spa
e. Infa
t, no more splitting event is possible.Init =begin g := f ‖
TS := {1..m}end sorting =when ∀i.(i ∈ 1..m ⇒ i..i ∈ TS)thenskipend ;

The event-B Modelling Method 89The progress of the global pro
ess is a
hieved by splitting as long as pos-sible intervals of the tuple spa
e; only intervals with at least two elements
anbe splitted. The new event
hooses a value
alled a pivot: it splits an intervalinto two smaller ones and it updates g. Obviously, the way to update g is very
ru
ial for the implementation, as well as the
hoi
e of the pivot. The sele
tionsorting is one possible re�ned model that
an be derived, if the
hoi
e of thepivot is spe
ially done: the pivot is the greatest or the smallest value of theinterval.split_progress =any I, k, gp, x where
I ∈ TS ∧ k ∈ I ∧ ∃j.(j ∈ I ∧ j > k) ∧ gp ∈ I −→ N ∧
x ∈ ran(gp) ∧ ran(gp) = ran(I � g) ∧
∀z.(z ∈ I ∧ z ≤ k ⇒ gp(z) ≤ x) ∧
∀z.(z ∈ I ∧ z > k ⇒ gp(z) ≥ x)then
g := g ⊳− gp ‖
TS := TS − {I} ∪ {{y|y ∈ I ∧ y ≤ k}, {y|y ∈ I ∧ y > k}}endThe model has two main events; one event splits the intervals as long as thereis at least one interval with two values and an event for
ompleting the pro
ess.Duality of Sorting ModelsTwo models re�ne the basi
 model for the sorting problem; the tuple spa
efrees the designer from implementation details and stru
ture the
omputationpro
ess. In the �gure 17, we summarize the re�nement relationship betweenthe three models developed in the previous subse
tions. Two families of sort-ing te
hniques
an be redeveloped and we will develop the family of sortingte
hniques based on the split paradigm.

split−sort

basic−sorting

merge−sortFig. 17. Sorting developmentWe do not develop, in this paper, sorting algorithms of the merge familyand we restri
t our illustration to the split family.

90 Dominique Cansell and Dominique Méry5.4 Introdu
ing a Pivot and an IndexThe qui
ksort splits arrays by
hoosing a pivot variable and it reorganizes bothintervals su
h that any value of the �rst interval is smaller than any value ofthe se
ond interval. The next re�nement de�nes a pivot (piv) and a
on
reteindex (k), whi
h allows to split the
urrent interval (I). Two index variables,namely (binf) and bsup), de�ne the middle part of an interval. The middlepart is not pro
essed by the partitioning pro
ess. The partitioning algorithmis not used in our
urrent pro
ess, sin
e it
an split the
urrent interval inthree parts. The
ontrol of binf and bsup is fundamental: the in
reasing ofbinf and the de
reasing of bsup. The new invariant is enri
hed by statementson properties satis�ed by the new variables, namely piv,k, binf and bsup. Thevariable ToSplit dete
ts what is the phase of the partitioning pro
ess; it
an
ontain three values: No, when no split phase is running; Yes if the partitioningpro
ess is progressing, End when the partitioning pro
ess for a given intervalis
ompleted.The resulting invariant expresses intuitive properties over variables; theproof assistant generates proof obligations for validating the re�nement andhelps us to add details over variables that were missing. When developingabstra
t models, a proof assistant like Atelier B is
ru
ial and it avoids errorsin brain-aided proofs. The proof helps us to
hoose the
orre
t index (k) topartition the resulting interval, when the splitting pro
ess stops (ToSplit =
End). Expli
ations are ne
essary to read and to understand the invariant.The �rst part expresses typing information. I is the
urrent interval, whi
hsatis�es properties resulting from the guard of
hoi
e_interval event.

ToSplit ∈ {No, Y es, End} ∧ I ⊆ 1..m ∧ piv ∈ N ∧ binf ∈ 1..m ∧
bsup ∈ 1..m ∧ k ∈ N ∧
(ToSplit 6= No ⇒ piv ∈ ran(I � g)) ∧
(ToSplit 6= No ⇒ I ∈ TS) ∧
(ToSplit 6= No ⇒ I − max(I) 6= ∅) ∧
(ToSplit = Y es ⇒ binf ∈ I) ∧
(ToSplit = Y es ⇒ bsup ∈ I) ∧The splitting of the
urrent interval in two intervals is made possible by
on-troling the two variables binf and bsup. binf may in
rease and bsup may de-
rease: left_partition
an in
rease binf and right_partition
an de
rease binf.Both events are possibly o

uring when binf < bsup and are
omplementarywith respe
t to guards. The swap event is enabled, when both left_partitionand right_partition are no more enabled and when the two bounds are stillsatisfying the relationship binf < bsup. In this
ase, we must de
ide the newbound k whi
h must split the interval in two non-empty intervals:

(ToSplit = End ⇒ k ∈ I − {max(I)})

The event-B Modelling Method 91If one
hooses binf −1 or bsup, these values must be di�erent to the initialvalue of the greater bound. So, if this greater bound does not
hange, the otherbound must be less and the pivot is still in the �rst part.
(ToSplit = Y es ∧ binf = min(I) ⇒

piv /∈ ran(bsup + 1..max(I) � g)) ∧
(ToSplit = Y es ∧ bsup = max(I) ⇒ binf < bsup) ∧
(ToSplit = Y es ∧ bsup = max(I) ⇒

piv /∈ ran(min(I)..binf − 1 � g)) ∧
(ToSplit = Y es ∧ bsup = max(I) ⇒ piv ∈ ran(I − {max(I)} � g)) ∧
(ToSplit = Y es ⇒ ∀z · (z ∈ min(I)..binf − 1 ⇒ g(z) ≤ piv)) ∧
(ToSplit = Y es ⇒ ∀z · (z ∈ (bsup + 1)..max(I) ⇒ g(z) ≥ piv)) ∧
(ToSplit = Y es ∧ bsup < binf ⇒ binf ≤ max(I)) ∧
(ToSplit = Y es ∧ bsup ≤ binf ⇒ (binf = bsup ∨ binf = bsup + 1)) ∧
(binf = bsup ⇒ bsup < max(I)) ∧
(ToSplit = End ⇒ k ∈ I − {max(I)}) ∧
(ToSplit = End ⇒ ∀z · (z ∈ min(I)..k ⇒ g(z) ≤ piv)) ∧
(ToSplit = End ⇒ ∀z · (z ∈ k + 1..max(I) ⇒ g(z) ≥ piv))Safety properties
an be proved from the invariant and are stated in the
lause ASSERTIONS of the B ma
hine. These properties are useful to validatethe system itself:

(ToSplit = Y es ⇒ I − max(I) = min(I)..max(I) − 1) ∧
(ToSplit = Y es ⇒ min(I)..max(I) ⊆ I) ∧
(ToSplit = Y es ⇒ binf..bsup ⊆ I))The invariant is proved to be satis�ed by the re�ned events and we list there�ned events; the �rst one is the initialisation event
alled Init. The tuplespa
e
ontains only one interval, namely 1..m and the splitting pro
ess is notrunning at the initialisation state.Init =begin

g := f ‖ TS := {1..m} ‖ I := ∅ ‖ ToSplit := No ‖
piv :∈ N ‖binf :∈ 1..m ‖ bsup :∈ 1..m ‖ k :∈ 1..mendThe event sorting does not
hange; the guard of split_progress is verysimple. When the partition pro
ess is �nished (ToSplit = End), k is theindex result for the partition (see event partition)

92 Dominique Cansell and Dominique Mérysplit_progress =when
ToSplit = Endthen
ToSplit := Y es ‖
TS := TS − {I} ∪ {{y|y ∈ I ∧ y ≤ k}, {y|y ∈ I ∧ y > k}}end ;We introdu
e �ve new events. The �rst one, namely
hoi
e_interval,
hoosesan interval (not a singleton) in the tuple spa
e and initializes both index andthe pivot. After the a
tivation of this event, we
an
ut the
urrent interval(ToSplit = Y es).
hoi
e_interval =any J, PIV where

ToSplit = No ∧ J ∈ TS ∧
PIV ∈ ran((J − max(J)) � g) ∧ min(J) < max(J)then
ToSplit := Y es ‖I := J ‖
piv := PIV ‖binf := min(J) ‖bsup := max(J)end ;The three next events move the index to leave element less than pivot beforebinf and greater than pivot after bsup.left_partition =when

ToSplit = Y es ∧
binf < bsup ∧
g(binf) < pivthen
binf := binf + 1end ;

right_partition =when
ToSplit = Y es ∧
binf < bsup ∧
g(binf) ≥ piv ∧
g(bsup) > pivthen
bsup := bsup − 1end ;swap =when

ToSplit = Y es ∧ binf < bsup ∧
g(binf) ≥ piv ∧ g(bsup) ≤ pivthen
binf, bsup := binf + 1, bsup− 1‖
g := g ⊳− {binf 7→ g(bsup)} ⊳− {bsup 7→ g(binf)}end ;

The event-B Modelling Method 93The last one stops the partitioning pro
ess and de�nes the index k, whi
hmakes progress possible (see event split_progress).partition =when
ToSplit = Y es ∧ binf ≥ bsupthen
ToSplit := End ‖if binf = bsup thenif g(binf) ≤ piv then

k := binfelse
k := binf − 1endelse

k := bsupendend ;5.5 A Set of Bounds and a Con
rete PivotThe goal of the next re�nement is to implement the tuple spa
e by a setof initial bounds from every interval in the abstra
t tuple spa
e. Initially, wehave tried to introdu
e this implementation in the �rst re�nement but it leadsus to a unique proof obligation, whose proof was very long. Hen
e, we havefound another abstra
tion, whi
h produ
es more proof obligations than theinitial
hoi
e but they were easier to prove.The implementation of the pivot is the middle of the
hosen interval andnow, the
hoi
e is deterministi
. The relationship between pairs of boundsof the new tuple spa
e (TB) and the tuple spa
e (TS) is stated by a gluinginvariant and the relationship is a one to one relation:
TB ⊆ 1..m + 1 ∧

∀ (a, b) ·





(

a ∈ TB ∧ b ∈ TB ∧
a < b ∧ a + 1..b − 1 ∩ TB = ∅

)

⇒ a..b − 1 ∈ TS



We add two new variables, namely A and B, whi
h are the bounds of the
urrent abstra
t interval I and they satisfy the following gluing invariant:

94 Dominique Cansell and Dominique Méry
ToSplit = Y es ⇒





A ∈ TB ∧ B ∈ TB ∧
A < B ∧ A + 1..B − 1 ∩ TB = ∅ ∧
A..B − 1 = I



 ∧

ToSplit = End ⇒





A ∈ TB ∧ B ∈ TB ∧
A < B ∧ A + 1..B − 1 ∩ TB = ∅ ∧
A..B − 1 = I



Two new safety properties are derived from the
urrent invariant:
∀I · (I ∈ TS ⇒ min(I) ∈ TB ∧ max(I) + 1 ∈ TB);

∀ (a, b, c) ·

















a ∈ TB ∧ b ∈ TB ∧ c ∈ TB ∧
a < b ∧ b < c ∧
a + 1..b − 1 ∩ TB = ∅ ∧
b + 1..c − 1 ∩ TB = ∅

⇒
∀ (x, y) · (x ∈ a..b − 1 ∧ y ∈ b..c − 1 ⇒ g(x) ≤ g(y)))















We re�ne only two events. The event split_progress adds the unique value
k + 1 in the
on
rete tuple spa
e (TB).split_progress =when ToSplit = End then

ToSplit := No ‖
TB := TB ∪ {k + 1}end ;The event choice_interval initializes the
on
rete bounds A and B of theabstra
t interval I. It
hooses the pivot as the value g((a + b − 1)/2) at themiddle of the
hosen interval.
hoi
e_interval =any a, b, p where

ToSplit = No ∧ a ∈ TB ∧ b ∈ TB ∧
a < b − 1 ∧
a + 1..b − 1 ∩ TB = ∅ ∧
p = g((a + b − 1)/2)then
ToSplit := Y es ‖ A := a ‖ B := b ‖
piv := p ‖ binf := a ‖ bsup := b − 1end ;5.6 Implementation of the Tuple Spa
e by a Sta
kThe next step plans to use a sta
k for implementing the tuple spa
e; it is
lear that the
urrent abstra
t model might be dire
tly implemented in a

The event-B Modelling Method 95
oordination language as C LINDA for instan
e. However, we re
all that the
oordination paradigm is a methodologi
al support for the development.In this re�nement, we implement the tuple spa
e by a sta
k. We use threenew variables TA, top, S, whi
h stands for the old variables TB. S (Single)
ontains all bounds interval whi
h are singletons and whi
h were on the topof the sta
k TA. All bounds in TB are single one (∈ S) or in the
odomain ofTA and vi
e-versa, a

ording to our gluing invariant. Two
onse
utive boundsin TB are given by two
onse
utive index of the sta
k (array). The
on
retetuple spa
e TA is sorted. top is the dimension of TA. Noti
e that top is alwaysbetween 1 and m + 1. No sta
k over�ow
an o

ur.
top ∈ 1..m + 1 ∧
TA ∈ 1..top → 1..m + 1 ∧
S ⊆ TB ∧
TB = ran(TA) ∪ S ∧

∀(i, j) ·













i ∈ dom(TA) ∧
j ∈ dom(TA) ∧
i < j ∧

⇒
TA(i) < TA(j))











When S is empty, the greater bound in the
odomain of TA is m + 1 and,when S is not empty, it
ontains
onse
utive index from m+1 and the greaterbound in the
odomain of TA and the minimum of S are
onse
utive. Usingthis te
hni
al invariant, it is easier to prove the previous gluing invariant.
(S = ∅ ⇒ max(ran(TA)) = m + 1) ∧
(S 6= ∅ ⇒ S = min(S)..m + 1) ∧
(S 6= ∅ ⇒ max(ran(TA)) + 1 = min(S)) ∧The following properties are proved from the invariant.
(ToSplit 6= No ⇒ (top 7→ B) ∈ TA) ∧
(ToSplit 6= No ⇒ (top − 1 7→ A) ∈ TA) ∧
(ToSplit 6= No ⇒ top > 1) ∧
(ToSplit 6= No ⇒ top ≤ m)
TA : 1..top ֌ 1..m + 1 ∧
max(ran(TA)) = TA(top) ∧
ran(TA) ∩ S = ∅ ∧

96 Dominique Cansell and Dominique Méry
∀(h, n) ·





























n : 1..m + 1 ∧
h : 1..n ֌ 1..n ∧

∀(x, y) ·













x ∈ 1..n ∧
y ∈ 1..n ∧
x < y ∧

⇒
h(x) < h(y))













⇒
h = id(1..n)



























The last one is very important in proving that there is no run sta
k over�owon our sta
k. It expresses that the unique in
reasing into fun
tion between
1..m+1 and 1..m+1 is the identity. We have proved it in another B ma
hinewith other preliminary lemmas like previous assertions. The initial event iswritten from the previous one.Init =begin

g := f ‖TA := {1 7→ 1, 2 7→ m + 1} ‖S := ∅ ‖top := 2 ‖
ToSplit := No ‖A, B := m + 1, 1 ‖piv :∈ N ‖
binf :∈ 1..m ‖bsup :∈ 1..m ‖k :∈ 1..mendOnly three old events
hange. Now, the guard of sorting is top = 1: re-member that the proof of the re�nement assumes that in this
ase all intervalsare singleton. The implementation is very
lose.sorting =when top = 1 thenskipend ;split_progress =when ToSplit = End then
ToSplit := No ‖
top := top + 1 ‖
TA := (TA ⊳− {top 7→ k + 1}) ⊳− {top + 1 7→ B}end ;The event whi
h
hooses the interval is now
ompletely deterministi
. Thebounds of the
hosen interval are on the top of the sta
k TA. Noti
e, that the
hosen interval is not a singleton (TA(top − 1) + 1 6= TA(top). Singleton onthe top of the sta
k is removed by a new event as follows:

The event-B Modelling Method 97
hoi
e_interval =when
top > 1 ∧
(TA(top − 1) + 1/ = TA(top)) ∧
ToSplit = Nothen
ToSplit := Y es ‖

A, B, piv, binf, bsup : |













A = TA(top − 1) ∧
B = TA(top) ∧
piv = g((A + B − 1)/2) ∧
binf = A ∧
bsup = B − 1











end ;New event, so-
alled elim_single, eliminates every singleton on the top ofthe sta
k. elim_single =when
top > 1 ∧
TA(top − 1) + 1 = TA(top) ∧
ToSplit = Nothen
S := S ∪ {TA(top)} ‖
top := top − 1 ‖
TA := 1..top − 1 � TAend ;All guards of the previous system are very simple to implement and allevents are deterministi
. We
an easily derive from this system an iterativeprogram using array and loops. The set of singleton S is not important in thisimplementation. If somebody wants to use it, one
an store it in TA from theindex m in a de
reasing way. The iterative version of the algorithm is givenin the �gure 18.5.7 Con
lusionThe iterative algorithm is three times faster that the qui
ksort; it is obtainedby
ombining the
oordination paradigm and the event-driven paradigm. Ev-ery abstra
t model
an be implemented by a
oordination program but weuse the
oordination paradigm as a
omputation model and the re�nementallows us to transit from the
oordination model to the
lassi
al sequentialmodel. Moreover, it provides us a way to develop a split algorithm withoutuse of re
ursive aspe
t. The experien
e shows that
oordination gives a sim-ple way to think on the a
tivity of events and it helps in explaining what is

98 Dominique Cansell and Dominique Mérybegin
g := f ; TA[1] := 1; TA[2] := m + 1; top := 2;
/ ⋆ ToSplit = No ⋆ /while top 6= 1 dowhile top > 1 ∧ TA[top − 1] + 1 = TA[top] do

top := top − 1od ;if top > 1 then
A := TA[top − 1];
B := TA[top];
binf := A;
bsup := B − 1;
piv := g[(binf + bsup)div2];
/ ⋆ ToSplit = Y es ⋆ /while (binf < bsup) dowhile binf < bsup ∧ g[binf] < piv do

binf := binf + 1od ;while binf < bsup ∧ g[bsup] > piv do
bsup := bsup − 1od ;if binf < bsup then
temp := g[binf];
g[binf] := g[bsup];
g[bsup] := temp;
binf := binf + 1;
bsup := bsup − 1endod ;if binf = bsup thenif g[binf] ≤ piv then
k := binfelse
k := binf − 1endelse

k := bsupend ;
/ ⋆ ToSplit = End ⋆ /
TA[top] := k + 1; top := top + 1; TA[top] := B
/ ⋆ ToSplit = No ⋆ /endodend Fig. 18. A
orre
t iterative program

The event-B Modelling Method 99really happening, when, for instan
e, a paradigm is applied for sorting. Wehave not
ompletely explored the promise land of
oordination and we havenot
ompared our works to re�nements for
oordination.6 Spanning Trees Algorithms6.1 Introdu
tionGraphs algorithms and graph-theoreti
al problems provide a
hallenging bat-tle �eld for the in
remental development of proved models. The B event-basedapproa
h implements the in
remental and proved development of abstra
tmodels whi
h are translated into algorithms; we fo
us our methodology onthe minimum spanning tree problem and on Prim's algorithm. The
orre
t-ness of the resulting solution is based on properties over trees and we showhow the greedy strategy is e�
ient in this
ase. We
ompare properties provenme
hani
ally to the properties found in a
lassi
al algorithms textbook. Thisse
tion analyses the proof-based development of Minimal Spanning Tree al-gorithms and Prim's algorithm in parti
ular [94℄ is produ
ed in �ne.6.2 The Minimum Spanning Tree ProblemThe Minimum Spanning Tree Problem, Minimal Spanning Tree problem forshort, is the problem of �nding a minimum spanning tree with respe
t toa
onne
ted graph. The literature
ontains several algorithmi
 solutions likePrim's algorithm [94℄ or Kruskal's algorithm [72℄. Both algorithms implementthe greedy method. Typi
ally, we assume that a
ost fun
tion is related toevery edge and the problem is to infer a globally minimum spanning tree,whi
h
overs the initial graph. The
ost fun
tion returns integer values. TheMinimal Spanning Tree problem is strongly related to pra
ti
al problems likethe optimisation of
ir
uitry and the greedy strategy advo
ates making the
hoi
e that is the best one at the moment; It does not always guarantee theoptimality but
ertain greedy strategies yield a Minimal Spanning Tree.Prim's algorithm is easy to explain but it underlies mathemati
al proper-ties related to the graph theory and espe
ially the general theory of trees. We
onsider two kinds of solutions; a �rst one is
alled generi
 algorithm be
auseit does not use a
ost fun
tion. This �rst generi
 solution allows us to developa se
ond solution: the Minimal Spanning Tree one.Let us summarize how Prim's algorithm works. The state of the algorithmwhile exe
uting
ontains two sets of nodes of the
urrent graphs. A �rst set ofnodes, equipped with a restri
tion of the relation over the global set of nodes,de�nes the
urrent spanning tree starting from a spe
ial node
alled the rootof the spanning tree. A se
ond set of nodes is the
omplement of the �rst set.The a
y
li
ity of the spanning tree must be preserved, while adding a newedge in the
urrent spanning tree and the basi

omputation step
onsists

100 Dominique Cansell and Dominique Méryof taking an edge between a node in the
urrent spanning tree and a nodewhi
h is in the other set. The
hoi
e leads to maintaining the a
y
li
ity of the
urrent spanning tree with the new node, sin
e both sets of nodes are disjoint.The pro
ess is repeated as long as the set of remaining and un
hosen nodesis empty. The �nal
omputed tree is a spanning tree
omputed by the generi
algorithm. Now, if one adds the
ost fun
tion, one gets Prim's algorithm bymodifying the
hoi
e of the new node and edge to add to the
urrent spanningtree. In fa
t, the minimum edge is
hosen and the �nal spanning tree is thenthe minimum spanning tree. However, the addition of the
ost fun
tion is are�nement of the generi
 solution.The generi
 Minimal Spanning Tree algorithm without
ost fun
tion issket
hed as follows:
• Pre
ondition: A undire
ted
onne
ted graph, g, over a set of nodes NDand a node r
• Initial Step tr_nodes (the
urrent set of nodes)
ontains only r and isin
luded into ND and tr (the
urrent set of edges) is empty
• Computation Step If ND − tr_nodes is not empty, then
hoose a node xin tr_nodes and a node y in ND − tr_nodes su
h that the link (x, y) isin g with the minimum
ost and add it to tr; then add y to tr_nodes and

(x, y) to tr
• Termination Step If ND − tr_nodes is empty (ND = tr_nodes), then tris a minimum spanning tree on ND
• Post
ondition (ND, tr) is a minimum spanning treeThe termination of the algorithm is ensured by de
reasing the set ND −
tr_nodes. The generi
ity of the solution leads us to the re�nement by in-trodu
ing the
ost fun
tion in the
omputation step. We have a
lear simpleabstra
t view of the problem and of the solution. We
an, in fa
t, state theproblem in the B event-based framework. It remains to prove the optimal-ity of the resulting spanning tree and that will be derived using tools andmodels. Before starting the modelling, we re
all the B-event-based modellingte
hnique.6.3 Development of a Spanning Tree AlgorithmFormal Spe
i�
ation of the Spanning Tree ProblemFirst we de�ne elements of the
urrent graph namely g over the set of nodesnamely ND. The graph is assumed to be undire
ted, whi
h is modeled by thesymmetry of the relation of the graph. Node r is the root of the resulting treeand we obtain the following B de�nitions:

g ⊆ ND × ND ∧
g = g−1 ∧
r ∈ ND

The event-B Modelling Method 101The termination of the algorithm is
learly related to properties of the
urrent graph; the existen
e of the spanning tree is based on the
onne
tivityof the graph. The modelling of a tree uses the a
y
li
ity of the graph. A treeis de�ned by a root r, a node: r ∈ ND, and a parent fun
tion t (ea
h nodehas an unique parent node, but the root): t ∈ ND − {r} −→ ND. Atree is an a
y
li
 graph. A
y
le c in a �nite graph t built on a set ND, is asubset of ND whose elements are members of the inverse image of c under
t, formally c ⊆ t−1[c]. To ful�ll the requirement of a
y
li
ity, the only set cthat enjoys this property is ne
essarily the empty set. We formalize it by theleft predi
ate that follows, whi
h
an be proved to be equivalent to the oneon the right, whi
h
an be used as an indu
tion rule:

∀c · (
c ⊆ ND ∧
c ⊆ t−1 [c]

⇒
c = ∅)

⇔

∀q · (
q ⊆ ND ∧
r ∈ q ∧
t−1 [q] ⊆ q

⇒
ND = q)We prove the equivalen
e using Atelier B. We
an now de�ne a spanningtree (rooted by r and with the parent fun
tion t) of a graph g as one whoseparent fun
tion is in
luded in g, formally:

spanning (t, g) =




t ∈ ND − {r} −→ ND ∧
∀q · (q ⊆ ND ∧ r ∈ q ∧ t−1 [q] ⊆ q ⇒ ND = q) ∧
t ⊆ g



Now we
an de�ne the set tree (g) of all spanning trees (with root r) of thegraph g, formally:
tree (g) = {t|spanning (t, g)}We de�ne the property of being a
onne
ted graph by connected(g):

connected (g) =
(

g ∈ ND ↔ ND ∧
∀S · (S ⊆ ND ∧ r ∈ S ∧ g [S] ⊆ S ⇒ ND = S)

)The graph g and the node r are two global
onstants of our problem andmust satisfy properties stated above. Moreover, we assert that there is at leastone solution to our problem. The optimality of the solution will be analyzedlater, while introdu
ing the
ost fun
tion. Now, we build the �rst model whi
h
omputes the solution in one shot. The event span
orresponds to produ
ing aspanning tree among the non-empty set of possible spanning trees for g. Thevariable st
ontains the resulting spanning tree.

102 Dominique Cansell and Dominique Méryspan =begin
st :∈ tree(g)end

st ∈ ND ↔ ND

The invariant is very simple and isonly a type invariant; the initial-ization establishes the invariant.The
urrent model is in fa
t the spe
i�
ation of the simple spanning treeproblem; we have not yet mentioned the
ost fun
tion. The next step is tore�ne the
urrent model into a simple spanning tree algorithm.Development of a Simple Spanning Tree AlgorithmThe se
ond model introdu
es a new event whi
h gradually
omputes the span-ning tree by
onstru
ting the spanning tree in a progressive way. The newevent adds a new edge to the
urrent tree tr whi
h partly spans g. The
ho-sen edge is su
h that the �rst
omponent of the pair is in tr_nodes and these
ond one is in remaining_nodes. These two new variables partition the setof nodes and we obtain the following new properties to add to the invariantof the
urrent model.
tr_nodes ⊆ ND ∧
remaining_nodes ⊆ ND ∧
tr_nodes ∪ remaining_nodes = ND ∧
tr_nodes ∩ remaining_nodes = ∅A new event, progress, simulates the
omputation step of the
urrent so-lution by
hoosing a pair maintaining the updated invariant.progress =sele
t
remaining_nodes 6= ∅thenany x, y where

x, y ∈ g ∧ x, y ∈ tr_nodes × remaining_nodesthen
tr := tr ∪ {y 7→ x} ||
tr_nodes := tr_nodes ∪ {y} ||
remaining_nodes := remaining_nodes − {y}endend

The event-B Modelling Method 103The event span is simply re�ned by modifying the guard of the previousinstan
e of the event in the abstra
t model. The event is triggered when theset of remaining nodes is empty: the variable st
ontains a spanning tree forthe graph g. span =sele
t
remaining_nodes = ∅then
st := trendThe invariant of the new model states the properties of the two new vari-ables and relates them to previous ones.

tr_nodes ⊆ ND ∧
remaining_nodes ⊆ ND ∧
tr_nodes ∪ remaining_nodes = ND ∧
tr_nodes ∩ remaining_nodes = ∅ ∧
tr ∈ tr_nodes − {r} −→ tr_nodes ∧
∀q · (q ⊆ tr_nodes ∧ r ∈ q ∧ tr−1 [q] ⊆ q ⇒ tr_nodes = q)The following initialization establishes the invariant:

tr := ∅ ||
tr_nodes := {r} ||
remaining_nodes := ND − {r}The expression of the absen
e of deadlo
k is simply stated as follows:

remaining_nodes = ∅ ∨
remaining_nodes 6= ∅ ∧

∃(x, y).

(

x, y ∈ g ∧
x, y ∈ tr_nodes × remaining_nodes

)We have obtained a simple iterative solution for the simple Minimal Span-ning Tree problem; the solution follows the sket
h of the algorithm given inthe subse
tion des
ribing the so
alled generi
 algorithm in the book of Cor-men et al. [55℄. We
an derive the algorithm of the �gure 19 from the
urrentmodel:The next step re�nes the
urrent model into a model where the
ost fun
-tion is e�e
tively used.

104 Dominique Cansell and Dominique Méryalgorithm generic_MSTbegin tr := ∅;
tr_nodes = {r};while remaining_nodes 6= ∅ dolet x, y where

x, y ∈ g ∧ x, y ∈ tr_nodes × remaining_nodesthen
tr := tr ∪ {y 7→ x};
tr_nodes := tr_nodes ∪ {y};
remaining_nodes := remaining_nodes − {y}endend_while

st := tr endFig. 19. Derived MST algorithmA Proof View of the Spanning Tree AlgorithmThe previous model
omputes a spanning tree, when the graph is
onne
ted.This algorithm looks like a proof of existen
e of a spanning tree; the followinglemma allows us to prove that the set of spanning trees is not empty andhen
e a minimum spanning tree exists:Theorem 3. (Existen
e of a spanning tree)
connected (g) ⇒ tree (g) 6= ∅However, the previous lemma requires to
onstru
t a tree from the hy-pothesis related to the
onne
tivity of the graph. Hen
e, we must prove a �rstindu
tive theorem on �nite sets, whi
h will in
lude the existen
e of a tree.We suppose that the set ND is �nite and there exists a fun
tion from ND to

1..n, where n is the
ardinality of ND.Theorem 4. (An indu
tive theorem on �nite sets)
∀P · (

P ⊆ P(ND) ∧
∅ ∈ P ∧
∀A · (A ∈ P ∧ A 6= ND ⇒ ∃a · (a ∈ ND − A ∧ A ∪ {a} ∈ P))

⇒
ND ∈ P)We
an use the previous lemma with the following set:

The event-B Modelling Method 105
{A|A ⊆ ND ∧ ∃f ·













f ∈ A − {r} −→ A ∧
f ⊆ g ∧

∀S ·





S ⊆ ND ∧ r ∈ S ∧ f−1[S] ⊆ S
⇒
A ⊆ S

















}to prove that the set of spanning trees of g is not empty.6.4 Development of Prim's AlgorithmThe
ost fun
tion is de�ned on the set of edges and is extended over the globalset of possible pairs of nodes.
cost : g −→ Z ∧
∀(x, y) · (x, y ∈ g ⇒ cost(x 7→ y) = cost(y 7→ x)) ∧
Cost : P(g) −→ Z ∧
Cost({}) = 0 ∧

∀(s, x, y) ·





s ∈ P(g) ∧ x, y ∈ g − s
⇒
Cost(s ∪ {x 7→ y}) = Cost(s) + cost(x 7→ y)



We have proved that tree(g) is not empty, sin
e the graph g is
onne
ted;the mst_set(g)
ontaining every minimum spanning tree of the graph g isde�ned as follows:
mst_set(g) =
{mst|mst ∈ tree(g) ∧ ∀tr · (tr ∈ tree(g) ⇒ Cost(mst) ≤ Cost(tr))}The set mst_set(g) is
learly not empty. The �rst �one shot� model isre�ned into the new model whi
h
ontains only one event span. We strengthenthe de�nition of the
hoi
e of the resulting tree by strengthening the
ondi-tion over the set and by
hoosing a
andidate in the set of possible MinimalSpanning Tree trees. span =begin

st :∈ mst_set(g)endThe se
ond model gradually
omputes the spanning tree by adding a newedge to the
urrent �under
onstru
tion� tree tr spanning a part of g. The tree
tr is de�ned over the set of already treated nodes,
alled tr_nodes. The eventprogress is modi�ed to handle the minimality
riterion: the guard is modi�edto integrate the
hoi
e of the minimum edge among the remaining possibleones.

106 Dominique Cansell and Dominique Méryprogress =sele
t
remaining_nodes 6= ∅thenany x, y where

x, y ∈ g ∧ x, y ∈ tr_nodes × remaining_nodes ∧
∀(a, b) · (a ∈ tr_nodes ∧

b ∈ remaining_nodes ∧
a, b ∈ g

⇒
cost(y 7→ x) ≤ cost(b 7→ a))then

tr := tr ∪ {y 7→ x} ||
tr_nodes := tr_nodes ∪ {y} ||
remaining_nodes := remaining_nodes − {y}endendThe event span remains un
hanged:span =sele
t

remaining_nodes = ∅then
st := trendThe invariant in
ludes the invariant of the re�ned model of the generi
re�nement and we add that the
urrent spanning tree tr is a part of a minimumspanning tree of the graph g:

∃T · (T ∈ mst_set(g) ∧ tr ⊆ T)The invariant implies that after
ompletion, when the event span o

urs,the
urrent spanning tree tr is �nally a minimal one. Sin
e tree(g) is not empty,then mst_set(g) is not empty and a tree
an be
hosen in this non-empty setto prove that a Minimal Spanning Tree exists (this Minimal Spanning Tree
ontains ∅). So the invariant holds for the initialization, using the lemma 1.The di�
ult task is to prove that the event progress maintains the invariant.We
an take the minimum spanning tree given by the invariant, if y 7→ x is inthis tree. Or else we must provide another minimum tree whi
h in
ludes the
urrent one and the new edge y 7→ x.In fa
t, textbooks provide algorithms implementing the greedy strategyand we refer our explanations to the book of Cormen et al. [55℄. The authors

The event-B Modelling Method 107prove a theorem page 501 numbered 24.1 to assert that the
hoi
e of the twoedges is done following a given requirement, namely a safe edge (a safe edgeis a edge allowing the progress of the algorithm). We re
all the theorem:Theorem 5. (24.1, p 501 from [55℄)Let g be a
onne
ted, undire
ted graph on ND (set of nodes) with a real-valued weight fun
tion cost de�ned on g (edges). Let tr be a subset of gthat is in
luded in some minimum spanning tree for g, let (tr_nodes, ND −
tr_nodes) be any
ut of g that respe
ts tr_nodes, and let (x, y) be a light edge
rossing (tr_nodes, ND − tr_nodes). Then edge (x, y) is safe for tr_nodes.Let us explain notions of
ut,
rosses and light edge. A
ut
(tr_nodes, ND − tr_nodes)) of an undire
ted graph g is a partition of ND.An edge (x, y)
rosses the
ut (tr_nodes, ND − tr_nodes) if one of its end-points is in tr_nodes and the other is in ND − tr_nodes. An edge is a lightedge
rossing a
ut if its weight is the minimum of any edge
rossing the
ut.A light edge is not unique.Proof: Let T be a minimum spanning tree that in
ludes tr, and assume that
T does not
ontain the light edge (x, y), sin
e if it does, we are done. We shall
onstru
t another minimum spanning tree T ′ that in
ludes tr ∪ {(x, y)} byusing a
ut-and-paste te
hnique, thereby showing that (x, y) is a safe edge for
tr. The edge (x, y) forms a
y
le with the edges on the path p from x to y in
T . Sin
e x and y are on opposite sides of the
ut (tr_nodes, ND−tr_nodes),there is at least one edge in T on the path p that also
rosses the
ut. Let (a, b)be any su
h edge. The edge (a, b) is not in tr, be
ause the
ut respe
ts tr. Sin
e(a,b) is on the unique path from x to y in T , removing (a, b) breaks T intotwo
omponents. Adding (x, y) re
onne
ts them to form a new spanning tree
T ′ = T − {(a, b)} ∪ {(x, y)}. We next show that T ′ is a minimum spanningtree. Sin
e (x, y) is a light edge
rossing (tr_nodes, ND−tr_nodes) and (a, b)also
rosses this
ut, cost(x, y) ≤ cost(a, b). Therefore,

Cost(T ′) = Cost(T) − cost(a, b) + cost(x, y)
≤ Cost(T)But T is a minimum spanning tree, so that Cost(T) ≤ Cost(T ′); thus,

T ′ must be a minimum spanning tree also. It remains to show that (x, y) isa
tually a safe edge for tr. We have tr ⊆ T ′, sin
e tr ⊆ T and (a, b) /∈ tr ;thus, tr ∪ {(x, y)} ⊆ T ′. Consequently, sin
e T ′ is a minimum spanning tree,
(x, y) is safe for tr. 2We have to prove the property above that has been in fa
t adapted intothe B proof engine. However, it is not a simple exer
ise of translation buta
omplete formulation of graph-theoreti
al aspe
ts; moreover, the proof hasbeen
ompletely me
hanized, as we will show in the next subse
tion. Letus
ompare the theorem and our formulation. The pair (tr_nodes, ND −
tr_nodes) is a
ut in the left part of the impli
ation; the restri
tion of thetree f to the set of nodes tr_nodes is a tree rooted by r; (x, y)
rosses the

108 Dominique Cansell and Dominique Méry
ut. Those assumptions imply that there exists a spanning tree sp rooted by
r that is minimum on tr_nodes and su
h that there exists a light
ut (a, b)preserving the minimality property. Hen
e, we express formally the propertyand it is proved separately:

∀(T, tr_nodes, x, y) · (
tr_nodes ⊆ ND ∧ y ∈ ND ∧ atree(r, ND, T)
r ∈ tr_nodes ∧ x ∈ tr_nodes ∧ (y /∈ tr_nodes) ∧
atree(r, tr_nodes, (tr_nodes − {r} � T � tr_nodes)) ∧
∀S · (S ⊆ ND ∧ y ∈ S ∧ T [S] ⊆ S ⇒ S ∩ tr_nodes 6= ∅)

⇒
∃(a, b, T ′) · (

a, b ∈ T ∧ a /∈ tr_nodes ∧ b ∈ tr_nodes ∧
atree(r, ND, T ′) ∧
T ′ ⊆ (T ∪ T−1 − {b 7→ a, a 7→ b}) ∪ {y 7→ x} ∧
Cost(T ′) = Cost(T) − cost(b 7→ a) + cost(y 7→ x) ∧
y 7→ x ∈ T ′ ∧
(tr_nodes − {r} � T � tr_nodes) ⊆ T ′))We have introdu
ed a predi
ate atree(root, nodes, tree) stating that astru
ture tree is a tree on the set nodes and whose root is root:

atree(root, nodes, tree) =




root ∈ nodes ∧
tree ∈ nodes − {root} −→ nodes ∧
∀q · (q ⊆ nodes ∧ root ∈ q ∧ tree−1 [q] ⊆ q ⇒ nodes = q)



The property is the key result for ensuring the optimality of the greedystrategy in this pro
ess. In the next subse
tion, we detail the proof of ourtheorem.6.5 On the Theory of TreesAs we have mentioned previously, trees play a
entral role in the justi�
ationof the algorithm; the optimality of the greedy strategy is mainly based on theproof of the theorem used by Cormen et al. [55℄. We should now detail thetheory of trees and intermediate lemmas required for deriving the theorem.Both the development of the tree identi�
ation proto
ol IEEE 1394 [12℄ andthe development of re
ursive fun
tions [40℄ require proofs related to the
losureof relations; we apply the same te
hnique for the
losure of a fun
tion de�ninga tree.Let (T, r) be a tree de�ned by a tree fun
tion T and a root r; they satisfythe following axioms atree(r, ND, T). The
losure cl of T−1 is the smallestrelation
ontaining id(ND) and stable by appli
ation of T−1, that is:

The event-B Modelling Method 109
cl ∈ ND ↔ ND ∧
id(ND) ⊆ cl ∧
(cl; T−1) ⊆ cl ∧
∀r · (

r ∈ ND ↔ ND ∧
id(ND) ⊆ r ∧
(r; T−1) ⊆ r ∧

⇒
cl ⊆ r

)Useful properties on the
losure
an be derived from those de�nitions; forinstan
e, the
losure is a �x-point; the root r is
onne
ted to every node ofthe
onne
ted
omponent; the
losure is transitive, et
. We summarize thoseproperties using our notations:
cl = id(ND) ∪ (cl; T−1);
r × ND ⊆ cl;
(T−1; cl) ⊆ cl;
(cl; cl) ⊆ cl;
T ∩ cl = ∅;
cl ∩ cl−1 ⊆ id(ND);Theorem 6. (Con
atenation of two separate trees)Let T1, r1, N1, T2, r2, N2, x be su
h that: 











atree(r1, N1, T1)
atree(r2, N2, T2

N1 ∩ N2 = ∅
N1 ∪ N2 = ND
x ∈ N1Then atree(r1, ND, T1 ∪ T2 ∪ {r2 7→ x}).Proof Sket
h: The proof is made up of several steps. A �rst step proves thatthe
on
atenation is a total fun
tion over the set N1 ∪N2. A se
ond one leadsto a more te
hni
al task and we should prove the indu
tive property over treesusing a splitting of the indu
tive variable S (S ∩ N1 and S ∩ N2). 2Theorem 7. (Subtree property)Let (T, r) be a tree on ND (atree(r, ND, T)) and b a node in ND.Then atree(b, cl[{b}], (cl[{b}]− {b} � T))Proof Sket
h: The main di�
ulty is related to the indu
tive part. We mustprove that, if S ⊆ cl[{b}], b ∈ S and (cl[{b}] − {b} � T)−1[S] ⊆ S, then

cl[{b}] ⊆ S. We use the indu
tive property on T with the set S ∪ ND −
cl[{b}]. 2

110 Dominique Cansell and Dominique MéryTheorem 8. (Complement of a sub-tree)Let (T, r) be a tree on ND and b a node in ND.Then atree(r, ND − cl[{b}], (cl[{b}] ⊳−T)).Proof Sket
h: We should prove that, if S ⊆ ND − cl[{b}], b ∈ S and
(cl[{b}] ⊳−T)−1[S] ⊆ S, then ND − cl[{b}] ⊆ S. A hint is to use theindu
tive property on T with the set S ∪ cl[{b}]. 2Now, we must
hara
terize the sub-tree, where we have reversed the edgebetween y to the root b. Let subtree(T, b) be the subtree of T with b as root(it's cl[{b}]− {b} � T). This following fun
tion seems to be a good
hoi
e:

(cl−1[{y}] ⊳− subtree(T, b)) ∪ (cl−1[{y}] � subtree(T, b))−1

(cl−1[{y}] � subtree(T, b))−1 is exa
tly all reverse edges. cl−1[{y}] is theset of all parents of y. 2Theorem 9. (Reverse from y to b produ
es a tree)Let b, y su
h that: { b ∈ ND
y ∈ cl[{b}]Then atree(y, cl[{b}], (cl−1[{y}] ⊳− subtree(T, b)) ∪ (cl−1[{y}]�subtree(T, b))−1)Proof Sket
h: In this
ase we must use an indu
tion on the tree cl[{b}]and sometimes use an se
ond indu
tion with the indu
tive property inhypothesis.2Theorem 10. (Existen
e of a spanning tree)Let a, b, x, y su
h that 


b, a ∈ T
y ∈ cl[{b}]
x : ND − cl[{b}]Then there exists a tree T ′ su
h that:























T ′ ⊆ (T ∪ T−1 − {a 7→ b, b 7→ a}) ∪ {y 7→ x}
atree(r, ND, T ′)
Cost(T ′) = Cost(T) − cost(b 7→ a) + cost(y 7→ x)
y 7→ x ∈ T ′

cl[{b}] ⊳−T ⊆ T ′Proof Sket
h: T ′ is obtained by
on
atenation of . the two trees identi�edin the two previous lemmas. Both trees are linked by the edge y 7→ x. 2Finally, we have to prove the existen
e of an edge b 7→ a whi
h is safe inthe sense of the greedy strategy.

The event-B Modelling Method 111Theorem 11. (Existen
e of b 7→ a)Let tr_nodes, y su
h that: 














tr_nodes ⊆ ND
y ∈ ND − tr_nodes
r ∈ tr_nodes

∀S ·





S ⊆ ND ∧ y ∈ S ∧ T [S] ⊆ S
⇒
S ∩ tr_nodes 6= ∅



Then there exists a and b su
h that: 






a ∈ tr_nodes
b 7→ a ∈ T
b /∈ tr_nodes
b ∈ cl−1[{y}]

.The property of the existen
e of a minimum spanning tree
an now bederived using lemmas and the proof of the property is then
ompletely me
h-anized. The development of Prim's algorithm leads us to state and to proveproperties over trees. The indu
tive de�nition of trees helps in deriving in-termediate lemmas asserting that the growing tree
onverges to the MinimalSpanning Tree, a

ording to the greedy strategy. The resulting algorithm is
ompletely proved and we
an partially reuse
urrent developed models to ob-tain Dijkstra's algorithm or Kruskal's one. The greedy strategy is not alwayse�
ient and the optimality of the resulting algorithm is proved by the theorem24.1 [55℄. The greedy method is based on optimisation
riteria and we havedeveloped a
olle
tion of models [44℄ whi
h
an be used to be instantiated,when the greedy strategy is appli
able and when some optimisation
riterionis veri�ed.7 Design of Distributed Algorithms by Re�nementDeveloping distributed algorithms
an be made simpler and safer by the useof re�nement te
hniques. Re�nement allows one to gradually develop a dis-tributed algorithm step by step, and to ta
kle
omplex problems like the PCITransa
tion Ordering Problem [38℄ or the IEEE 1394 [12℄. The B event-basedmethod [5℄ provides a framework integrating re�nement for deriving modelssolving distributed problems.The systems under
onsideration for our te
hnique are general softwaresystems,
ontrol systems, proto
ols, sequential and distributed algorithms,operating systems and
ir
uits; these are generally very
omplex and haveparts intera
ting with an environment. A dis
rete abstra
tion of su
h systems
onstitutes an adequate framework: su
h an abstra
tion is
alled a dis
retemodel. A dis
rete model is more generally known as a dis
rete transition sys-tem and provides a view of the
urrent system; the development of a model inB follows an in
remental pro
ess validated by re�nement. A system is modeledby a sequen
e of models related by the re�nement and managed in a proje
t.We limit the s
ope of our work to distributed algorithms modeled under the

112 Dominique Cansell and Dominique Mérylo
al
omputation rule [48℄ in graphs and we spe
ialize the proof obligationswith respe
t to the target of the development whi
h is a distributed algorithm�tting safety and liveness requirements.The goal of the IEEE 1394 proto
ol is to ele
t in a �nite time a spe
i�
node,
alled the leader , in a network made of various nodes linked by some
ommuni
ation
hannels. On
e the leader is ele
ted, ea
h non-leader node inthe network should have a well de�ned way to
ommuni
ate with it. Thisele
tion of the leader has to be done in a distributed and non-deterministi
way. The
urrent development partially replays the IEEE 1394 proto
ol devel-opment: the resulting algorithm is not the IEEE 1394 proto
ol. In fa
t, we arepresenting the development of a distributed leader ele
tion and we partiallyreuse the models of the IEEE 1394 proto
ol development: the �rst, se
ond andthird models are reused from our paper [12℄ and the
ontention is solved byassigning a stati
 priority to ea
h site. The resulting algorithm is derived fromthe last B model.7.1 The Basi
 Mathemati
al Stru
tureBefore
onsidering details of the proto
ol, we
hoose to give a very solid def-inition to the main topology of the network. It is essentially formalized bymeans of a set ND of nodes subje
ted to the following assumptions:1. the network is represented by a graph gbuilt on ND,2. the links between the nodes are bidire
-tional ,3. a node is not dire
tly
onne
ted to itself . g ⊆ ND × ND
g = g−1

id(ND) ∩ g = ∅Items 2 and 3 above are formally represented by a symmetri
 graph whosedomain (and thus
o-domain too)
orresponds to the entire �nite set of nodes.The symmetry of the graph is due to the representation of the non-orientedgraph by pairs of nodes and the link x − y is represented by the two pairs
x 7→ y and y 7→ x. Item 4 is rendered by saying that the graph is not re�exive.There are two other very important properties of the graph: it is
onne
tedand a
y
li
. Both these properties are formalized by
laiming that the relationbetween ea
h node and the spanning trees of the graph having that node asa root, that this relation is total and fun
tional. In other words, ea
h nodein the graph
an be asso
iated with one and exa
tly one tree rooted at thatnode and spanning the graph. We
an model a tree by a root r, whi
h is anode: r ∈ ND, and a parent fun
tion t (ea
h node has an unique parent node,ex
ept the root): t ∈ ND − {r} −→ ND. The tree is an a
y
li
 graph.A
y
le c in a �nite graph t built on a set N < D is a subset of ND whoseelements are members of the inverse image of c under t, formally: c ⊆ t−1[c].To ful�l the requirement of a
y
li
ity, the only set c that enjoys this propertyis thus the empty set. This
an be formalized by the left predi
ate that follows,

The event-B Modelling Method 113whi
h
an be proved to be equivalent to the one situated on the right, whi
h
an be used as an indu
tion rule:
∀c · (c ⊆ ND ∧ c ⊆ t−1 [c] ⇒ c = ∅)

⇔

∀q · (q ⊆ ND ∧ r ∈ q ∧ t−1 [q] ⊆ q ⇒ ND = q)We prove the equivalen
e using the tools Atelier B [52℄ and B4free/-Cli
k'n'Prove [53℄. We
an now de�ne a spanning tree (with root r and parentfun
tion t) of a graph g as one whose parent fun
tion is in
luded in g, formally:
spanning (r, t, g) =








r ∈ ND ∧
t ∈ ND − {r} −→ ND ∧
∀q · (q ⊆ ND ∧ r ∈ q ∧ t−1 [q] ⊆ q ⇒ ND = q) ∧
t ⊆ g







As mentioned above, ea
h node in the graph
an be asso
iated with exa
tlyone tree rooted at that node and whi
h spans the graph. For this, we de�nethe following total fun
tion f
onne
ting ea
h node r of the graph with itsspanning tree f(r):
f ∈ ND → (ND 7→ ND)

∀(r, t) ·









r ∈ ND ∧
t ∈ ND 7→ ND

⇒
t = f(r) ⇔ spanning (r, t, g)







The graph g and the fun
tion f are thus two global
onstants of the prob-lem. Sin
e g and f are not instantiated, we have not to deal with the size ofnetwork and automati
 te
hniques based on model
he
king are not helpful forunderstanding how the algorithm is working. The spe
ial issue [54℄ presentsa
olle
tion of veri�
ation te
hniques using model
he
king and the size ofthe network is
learly a pra
ti
al bound. On the
ontrary, the veri�
ationusing PVS [56℄ and I/O automata is more adequate than model
he
king,but invariants and proofs remain very di�
ult to understand. It is why weadvo
ate the use of the re�nement whi
h provides and in
remental way toderive both the algorithm and the proof. Moreover, the re�nement allows usto derive a new leader ele
tion distributed algorithm, whi
h is not possible inthe veri�
ation-oriented approa
h.

114 Dominique Cansell and Dominique Méry7.2 The First Model leaderelection0: the One-shot Ele
tionFrom the basi
 mathemati
al stru
ture developed in previous se
tion, theessen
e of the abstra
t algorithm implemented by the proto
ol is very simple:it
onsists in building gradually (and non-deterministi
ally) one of the span-ning trees of the graph. On
e this is done, then the root of that tree is theele
ted leader and the
ommuni
ation stru
ture between the other nodes andthe leader is obviously the spanning tree itself . The proto
ol,
onsidered glob-ally, has thus two variables: (1) the future spanning tree, sp, and (2) the futureleader, ld. The gradual
onstru
tion of the spanning tree simulates indu
tionsteps.The �rst formal model of the development
ontains de�nitions and prop-erties of the two global
onstants (the above graph g and fun
tion f togetherwith their properties), and the de�nition of the two mentioned global vari-ables sp and ld typed in a very loose way: sp is a binary relation built on NDand ld is a node. The dynami
 aspe
t of the proto
ol is essentially made ofone event,
alled ele
t, whi
h
laims what the result of the proto
ol is, when itis
ompleted . In other words, at this level, there is no proto
ol, just the for-mal de�nition of its intended result, namely a spanning tree sp and its root ld.ele
t =begin
ld, sp : spanning (ld, sp, g)end As
an be seen, the ele
tion is donein one step. In other words, the span-ning tree appears at on
e. The anal-ogy of someone
losing and openingeyes
an be used here to explain thepro
ess of ele
tion at this very ab-stra
t level.7.3 Re�ning the First Model leaderelection0In this se
tion, we present two su

essive re�nements of the previous initialmodel. In the �rst one, we give the essen
e of the distributed algorithm. In these
ond re�nement, we introdu
e some
ommuni
ation me
hanisms betweenthe nodes.First Re�nement leaderelection1: Gradual Constru
tion of aSpanning TreeIn the �rst model leaderelection0, the
onstru
tion of the spanning tree wasperformed in one shot. Of
ourse, in a more realisti
 (
on
rete) formalization,this is not the
ase any more. In fa
t, the tree is
onstru
ted on a step by stepbasis. For this, a new variable,
alled tr, and a new event,
alled progress, areintrodu
ed. The variable tr represents a sub-graph of g, it is made of severaltrees (it is thus a forest) whi
h will gradually
onverge to the �nal tree, whi
hwe intend to build eventually. This
onvergen
e is performed by the event

The event-B Modelling Method 115MODEL
leaderelection0SETS
NDCONSTANTS
g, fDEFINITIONSspanning(r, t, g) =
0

B

B

@

r ∈ ND ∧
t ∈ ND − {r} −→ ND ∧
∀q · (q ⊆ ND ∧ r ∈ q ∧ t−1 [q] ⊆ q ⇒ ND = q) ∧
t ⊆ g

1

C

C

APROPERTIES
g ⊆ ND × ND ∧ g = g−1 ∧ id(ND) ∩ g = ∅ ∧ f ∈ ND → (ND 7→ ND)

∀(r, t) ·

0

B

B

@

r ∈ ND ∧
t ∈ ND 7→ ND

⇒
t = f(r) ⇔ spanning (r, t, g)

1

C

C

AVARIABLES
ld, tsINVARIANT
ld ∈ ND ∧ sp ∈ ND 7→ NDASSERTIONS
∀x · (x ∈ ND ⇒ f(x) ∩ f(x)−1 = ∅)INITIALISATION
ld :∈ ND ‖ sp :∈ ND 7→ NDEVENTSele
t =begin

ld, sp : spanning (ld, sp, g)endENDFig. 20. First model leaderelection0 for the distributed leader ele
tion algorithmprogress. This event involves two nodes x and y, whi
h are neighbours in thegraph g. Moreover, x and y are supposed to be both outside the domain of tr.In other words, ea
h of them has no parent yet in tr. However, the node x isthe parent of all its other neighbours (if any) in g. This last
ondition
an beformalized by means of the predi
ate g[{x}] = tr−1[{x}] ∪ {y} sin
e the setof neighbours of x in g is g[{x}] while the set of sons of x in tr is tr−1[{x}].When these
onditions are ful�lled, then the event progress
an be enabledand its a
tion has the e�e
t of making the node y the parent of x in tr. Theabstra
t event ele
t is now re�ned. Its new version is
on
erned with a node
x whi
h happens to be the parent of all its neighbours in g. This
ondition

116 Dominique Cansell and Dominique Méryis formalized by the predi
ate g[{x}] = tr−1[{x}]. When this
ondition isful�lled the a
tion of ele
t makes x the leader ld and tr the spanning tree sp.Next are the formal representations of these eventsprogress =any x, y where
x, y ∈ g ∧ x /∈ dom(tr) ∧ y /∈ dom(tr)
∧ g[{x}] = tr−1[{x}] ∪ {y}then
tr := tr ∪ {x 7→ y}end

ele
t =any x where
x ∈ ND ∧
g[{x}] = tr−1[{x}]then
ld, sp := x, trendThe new event progress
learly re�nes skip sin
e it only updates thevariable tr whi
h is a new variable of this re�nement with no existen
ein the abstra
tion. Also noti
e that progress
learly de
reases the quantity

card(g)− card(tr). The situation is far less
lear
on
erning the re�nement ofevent ele
t. We have to prove that when its guard is true then tr is indeed aspanning tree of the graph g whose root is pre
isely x. Formally, this leads toproving the following
∀x · (x ∈ ND ∧ g[{x}] = tr−1[{x}] ⇒ spanning (x, tr, g))A

ording to the de�nition of the
onstant fun
tion f , the previous prop-erty is
learly equivalent to

∀x · (x ∈ ND ∧ g[{x}] = tr−1[{x}] ⇒ tr = f(x))This means that tr and f(x) should have the same domain, namely ND−
{x}, and that for all n in ND − {x}, tr(n) is equal to f(x)(n). This amountsto proving the following:

ND = {x} ∪ {n |n ∈ ND − {x} ∧ f(x)(n) = tr(n) }This is done using the indu
tive property asso
iated with ea
h spanningtree f(x). Noti
e that we also need the following invariants:
tr ∈ ND 7→ ND
dom (tr) ⊳ (tr ∪ tr−1) = dom (tr) ⊳ g
tr ∩ tr−1 = ∅This new model, although more
on
rete than the previous one, is never-theless still an abstra
tion of the real proto
ol: it just explains how the leader
an be eventually ele
ted by the gradual transformation of the forest tr intoa unique tree spanning the graph g.

The event-B Modelling Method 117REFINEMENT
leaderelection1REFINES
leaderelection0VARIABLES
ld, ts, trINVARIANT
tr ∈ ND 7→ ND
dom (tr) ⊳ (tr ∪ tr−1) = dom (tr) ⊳ g
tr ∩ tr−1 = ∅ASSERTIONS
∀x · (x ∈ ND ∧ g[{x}] = tr−1[{x}] ⇒ tr = f(x))INITIALISATION
ld :∈ ND ‖ sp :∈ ND 7→ ND ‖ tr := ∅EVENTSprogress =any x, y where

x, y ∈ g ∧ x /∈ dom(tr) ∧ y /∈ dom(tr)
∧ g[{x}] = tr−1[{x}] ∪ {y}then
tr := tr ∪ {x 7→ y}end ;ele
t =any x where
x ∈ ND ∧
g[{x}] = tr−1[{x}]then
ld, sp := x, trendENDFig. 21. Se
ond model leaderelection1 for the distributed leader ele
tion algorithmSe
ond Re�nement leaderelection2: Introdu
ing Communi
ationChannelsIn the previous re�nement, the event progress was still very abstra
t: as soonas two nodes x and y with the required properties were dete
ted, the
orre-sponding a
tion took pla
e immediately: in other words, y be
ame the parentof x in one shot. In the real proto
ol things are not so magi
: on
e a node xhas dete
ted that it is the parent of all its neighbours ex
ept one y, it sends arequest to y in order to ask it to be
ome its parent. Node y then a
knowledgesthis request and �nally node x establishes the parent
onne
tion with node y.This
onne
tion, whi
h is thus established in three distributed steps, is
learly
loser to what happens in the real proto
ol. We shall see however in the nextre�nement that what we have just des
ribed is not yet the �nal word. But

118 Dominique Cansell and Dominique Mérylet us formalized this for the moment. In order to do so, we need to de�neat least two new variables: req, to handle the requests, and ack, to handlethe a
knowledgements. req is a partial fun
tion from ND to itself. When apair x 7→ y belongs to req it means that node x has send a request to node
y asking it to be
ome its parent: the fun
tionality of req is due to the fa
tthat x has only one parent. Clearly, req is also in
luded in the graph g. Whennode y sends an a
knowledgement to x this is be
ause y has already re
eiveda request from x: ack is thus a partial fun
tion in
luded in req.

req ∈ ND 7→ ND
req ⊆ g
ack ⊆ req
tr ⊆ ack
ack ∩ ack−1 = ∅

Noti
e that when a pair x 7→ y belongs to ack,it means that y has sent an a
knowledgment to
x (
learly y
an send several a
knowledgementssin
e it might be the parent of several nodes).It is also
lear that it is not possible in this
ase for the pair y 7→ x to belong to ack.The �nal
onne
tion between x and y is still represented by the fun
tion

tr. Thus tr is in
luded in ack. All this
an be formalized as shown. Twonew events are de�ned in order to manage requests and a
knowledgements:send_req, and send_a
k. As we shall see, event progress is modi�ed, whereasevent ele
t is left un
hanged. Here are the new events and the re�ned versionof progress:send_req =any x, y where
x, y ∈ g ∧ y, x /∈ ack ∧
x /∈ dom (req) ∧
g[{x}] = tr−1[{x}] ∪ {y}then
req := req ∪ {x 7→ y}end

send_a
k =any x, y where
x, y ∈ req ∧
x, y /∈ ack ∧
y /∈ dom (req)then
ack := ack ∪ {x 7→ y}endprogress =any x, y where

x, y ∈ ack ∧
x /∈ dom (tr)then
tr := tr ∪ {x 7→ y}endEvent send_req is enabled when a node x dis
overs that it is the parentof all its neighbours ex
ept one y: g[{x}] = tr−1[{x}] ∪ {y}. Noti
e that, asexpe
ted, this
ondition is exa
tly the one that allowed event progress in theprevious model to be enabled. Moreover x must not have sent already a re-quest to any node: x /∈ dom (req). Finally x must not have already sent ana
knowledgement to node y: y, x /∈ ack. When these
onditions are ful�lled

The event-B Modelling Method 119then the pair x 7→ y is added to req. Event send_a
k is enabled when a node
y re
eives a request from node x, moreover y must not have already sent ana
knowledgement to node x: x, y ∈ req and x, y /∈ ack. Finally node y mustnot have sent a request to any node: y /∈ dom (req) (we shall see very soonwhat happens when this
ondition does not hold). When these
onditions areful�lled, node y sends an a
knowledgement to node x: the pair x 7→ y is thusadded to ack. Event progress is enabled when a node x re
eives an a
knowl-edgement from node y: x, y ∈ ack. Moreover node x has not yet establishedany parent
onne
tion: x /∈ dom (tr). When these
onditions are ful�lled the
onne
tion is established: the pair x 7→ y is added to tr.Events send_req and send_a
k
learly re�ne skip. Moreover their a
-tions in
rement the
ardinal of req and ack respe
tively (these
ardinals arebounded by that d g). It remains for us to prove that the new version of eventprogress is a
orre
t re�nement of its abstra
tion. The a
tions being the same,it just remains for us to prove that the
on
rete guard implies the abstra
tone. This amounts to proving the following left predi
ate, whi
h is added asan invariant:

∀ (x, y) ·





















x, y ∈ ack ∧
x /∈ dom (tr)

⇒
x, y ∈ g ∧
x /∈ dom(tr) ∧
y /∈ dom(tr) ∧
g[{x}] = tr−1[{x}] ∪ {y}





















∀ (x, y) ·





















x, y ∈ req ∧
x, y /∈ ack

⇒
x, y ∈ g ∧
x /∈ dom(tr) ∧
y /∈ dom(tr) ∧
g[{x}] = tr−1[{x}] ∪ {y}



















When trying to prove that the left predi
ate is maintained by eventsend_a
k, we �nd that the right predi
ate above must also be proved. Itis thus added as a new invariant, whi
h is, this time, easily proved to bemaintained by all events.The problem of
ontention. The guard of the event send_a
k above
on-tains the
ondition y /∈ dom (req). If this
ondition does not hold while theother two guarding
onditions hold, that is x, y ∈ req and x, y /∈ ack hold,then
learly x has sent a request to y and y has sent a request to x: ea
hone of them wants the other to be its parent! This problem is
alled the
on-tention problem. In this
ase, no a
knowledgements should be sent sin
e then

120 Dominique Cansell and Dominique Méryea
h node x and y would be the parent of the other. In the real proto
olthe problem is solved by means of timers. As soon as a node y dis
overs a
ontention with node x, it waits for very a short delay in order to be
ertainthat the other node x has also dis
overed the problem. The very short delayin question is at least equal to the message transfer time between nodes (su
ha time is supposed to be bounded). After this, ea
h node randomly
hooses(with probability 1/2) to wait for either a short or a large delay (the di�eren
ebetween the two is at least twi
e the message transfer time). After the
hosendelay has passed ea
h node sends a new request to the other if it is in thesituation to do so. Clearly, if both nodes
hoose the same delay, the
ontentionsituation will reappear. However if they do not
hoose the same delay, thenthe one with the largest delay be
omes the parent of the other: when it wakesup, it dis
overs the request from the other while it has not itself already sentits own request, it
an therefore send an a
knowledgement and thus be
omethe parent. A

ording to the law of large numbers, the probability for bothnodes to inde�nitely
hoose the same delay is null. Thus, at some point, theywill (in probability)
hoose di�erent delays and one of them will thus be
omethe parent of the other. Rather than to reuse the
omplete IEEE 1394 devel-opment [12℄, we reuse a part of the development and develop a new solutionfor solving the
ontention problem; the new algorithm was dis
overed after amisunderstanding of the IEEE 1394 initial solution.When two nodes are in
ontention (and at most two nodes
an be in
ontention, it has been proved me
hani
ally and formally), ea
h node
an notsend an a
knowlegment to the other node; one of them should not be able tosend this a
k and the other one must do it. The main idea is to introdu
e aunique
ounter
alled ctr and it means that ea
h node is uniquely identi�edand must be identi�able. In a real network, one
an assume that equipmentsmight be uniquely identi�ed by an unique address, for instan
e, but it not thegeneral rule. The IEEE 1394 proto
ol does not make any assumption on theidenti�
ation of nodes.
ctr ∈ ND ֌ NThe new event is
alled solve_
nt. Like for send_a
k, the a
tion of thisevent adds the pair x 7→ y to ack.solve_
nt =any x, y where

x, y ∈ req − ack ∧ y ∈ dom (req) ∧ ctr(x) < ctr(y)then
ack := ack ∪ {x 7→ y}endThe two di�eren
es with the guard of event send_a
k
on
ern the
ondition

y ∈ dom (req), whi
h is true in solve_
nt and false in send_a
k and the guard

The event-B Modelling Method 121
ctr(x) < ctr(y) is added to the event solve_
nt. Sin
e ctr is an inje
tion, bothnodes x and y
an not both trigger this event. The proof of the invariantrequires the following extra invariants:

∀ (x, y) ·









x, y ∈ req − ack ∧
y ∈ dom (req)

⇒
y, x ∈ req









∀ (x, y) ·













x, y ∈ req − ack ∧
y ∈ dom (req) ∧
ctr(x) < ctr(y)

⇒
x, y /∈ ack













∀ (x, y, z) ·













x, y ∈ req ∧
z ∈ g[{x}] ∧
z 6= y

⇒
z, x ∈ tr











The
omplete formalization of the
ontention solution of the real IEEE 1394 pro-to
ol (involving the timers and the random
hoi
es) is not addressed neitherin the
urrent development, nor in the paper [12℄. Further work on the inte-gration of timers should be done.7.4 Last Re�nements: Lo
alizationIn the previous re�nement, the guards of the various events were de�ned interms of global
onstants or variables su
h as g, tr, req, ack. A
loser lookat this re�nement shows that these
onstants or variables are used in expres-sions of the following shapes: g−1[{x}], tr−1[{x}], ack−1[{x}], dom (req), and
dom (tr). These shapes di
tate the kind of data re�nement we now undertake.Fourth, �fth and sixth models progressively introdu
e lo
al informations,whi
h are related to abstra
t global values. The models are in the �gures 23,24 and 25; the model leaderelection5 introdu
es messages
ommuni
ations(TR, REQ, ACK).We de
lare �ve new variables nb (for neighbours), ch (for
hildren), ac (fora
knowledged), dr (for domain of req), and dt (for domain of tr). Next are thede
larations of these variables together with their simple de�nitions in termsof the global variables.

122 Dominique Cansell and Dominique MéryREFINEMENT leaderelection2REFINES leaderelection1CONSTANTS
ctrPROPERTIES

ctr ∈ ND ֌ NVARIABLES
ld, ts, tr, req, ackINVARIANT
req ∈ ND 7→ ND
req ⊆ g
ack ⊆ req
tr ⊆ ack
ack ∩ ack−1 = ∅
∀ (x, y)·
0

B

B

B

B

B

B

B

B

@

x, y ∈ ack ∧
x /∈ dom (tr)

⇒
x, y ∈ g ∧
x /∈ dom(tr) ∧
y /∈ dom(tr) ∧
g[{x}] = tr−1[{x}] ∪ {y}

1

C

C

C

C

C

C

C

C

A

∀ (x, y)·
0

B

B

B

B

B

B

B

B

@

x, y ∈ req ∧
x, y /∈ ack

⇒
x, y ∈ g ∧
x /∈ dom(tr) ∧
y /∈ dom(tr) ∧
g[{x}] = tr−1[{x}] ∪ {y}

1

C

C

C

C

C

C

C

C

A

∀ (x, y) ·

0

B

B

@

x, y ∈ req − ack ∧
y ∈ dom (req)

⇒
y, x ∈ req

1

C

C

A

∀ (x, y) ·

0

B

B

B

B

@

x, y ∈ req − ack ∧
y ∈ dom (req) ∧
ctr(x) < ctr(y)

⇒
x, y /∈ ack

1

C

C

C

C

A

∀ (x, y, z) ·

0

B

B

B

B

@

x, y ∈ req ∧
z ∈ g[{x}] ∧
z 6= y

⇒
z, x ∈ tr

1

C

C

C

C

A

ASSERTIONS
id(ND) ∩ ack = ∅
id(ND) ∩ req = ∅
id(ND) ∩ tr = ∅INITIALISATION
ld :∈ ND ‖ tr := ∅ ‖ack := ∅ ‖
sp :∈ ND 7→ ND ‖req := ∅EVENTSsend_req =any x, y where

x, y ∈ g ∧ y, x /∈ ack ∧
x /∈ dom (req) ∧
g[{x}] = tr−1[{x}] ∪ {y}then
req := req ∪ {x 7→ y}end ;send_a
k =any x, y where
x, y ∈ req ∧
x, y /∈ ack ∧
y /∈ dom (req)then
ack := ack ∪ {x 7→ y}end ;solve_
nt =any x, y where
x, y ∈ req − ack ∧
y ∈ dom (req) ∧
ctr(x) < ctr(y)then
ack := ack ∪ {x 7→ y}end ;progress =any x, y where
x, y ∈ ack ∧ x /∈ dom (tr)then
tr := tr ∪ {x 7→ y}end ;ele
t =any x where
x ∈ ND ∧
g[{x}] = tr−1[{x}]then
ld, sp := x, trendENDFig. 22. Third model leaderelection2 for the distributed leader ele
tion algorithm

The event-B Modelling Method 123REFINEMENT
leaderelection3REFINES
leaderelection2CONSTANTS
nbPROPERTIES
nb ∈ ND → P(ND)
∀x · (x ∈ ND ⇒ nb(x) = g−1[{x}])VARIABLES
ld, ts, tr, req, ack, chINVARIANT
ch ∈ ND → P(ND)
∀x · (x ∈ ND ⇒ ch(x) ⊆ tr−1[{x}])INITIALISATION
ld :∈ ND ‖ch = ND × {∅}
tr := ∅ ‖req := ∅ ‖ack := ∅EVENTSele
t =any x where

x ∈ ND ∧
nb(x) = ch(x)then
ld := xendsend_req =any x, y where
x, y ∈ g ∧ y, x /∈ ack ∧
x /∈ dom (req) ∧
nb(x) = ch(x) ∪ {y}then
req := req ∪ {x 7→ y}end ;re
eive_
nf =any x, y where
x, y ∈ tr ∧
x /∈ ch(y)then
ch(y) := ch(y) ∪ {x}endENDFig. 23. Fourth model leaderelection3 for the distributed leader ele
tion algorithm

124 Dominique Cansell and Dominique MéryREFINEMENT
leaderelection4REFINES
leaderelection3VARIABLES
ld, ts, tr, req, ack, ch, dr, ac, dtINVARIANT
ac ∈ ND → P(ND)
dr ⊆ ND
dt ⊆ ND
∀x · (x ∈ ND ⇒ ac(x) = ack−1[{x}])
dr = dom (req)
dt = dom (tr)INITIALISATION
ld :∈ ND ‖ch = ND × {∅}
tr := ∅ ‖req := ∅ ‖ack := ∅ ‖

ac = ND × {∅} ‖dr := ∅ ‖dt := ∅ ‖EVENTSsend_req =any x, y where
x ∈ ND − dr ∧ y ∈ ND − ac(x) ∧ nb(x) = ch(x) ∪ {y}then
req := req ∪ {x 7→ y} ‖ dr := dr ∪ {x}endsend_a
k =any x, y where
x, y ∈ req ∧ x /∈ ac(y) ∧ y /∈ drthen
ack := ack ∪ {x 7→ y} ‖ ac(y) := ac(y) ∪ {x}endsolve_
nt =any x, y where
x, y ∈ req ∧
x /∈ ac(y) ∧ y ∈ dr ∧ ctr(x) < ctr(y)then
ack := ack ∪ {x 7→ y} ‖ ac(y) := ac(y) ∪ {x}endprogress =any x, y where
x, y ∈ ack ∧ x /∈ dtthen
tr := tr ∪ {x 7→ y} ‖ dt := dt ∪ {x}endENDFig. 24. Fifth model leaderelection4 for the distributed leader ele
tion algorithm

The event-B Modelling Method 125REFINEMENT leaderelection5REFINES leaderelection4VARIABLES
ld, ts, TR,REQ, ACK, ch, dr, ac, dtINVARIANT
REQ ∈ ND × ND ∧ req = REQ ∪ ack ∧ REQ ∩ ack = ∅
ACK ∈ ND × ND ∧ ack = ACK ∪ tr ∧ ACK ∩ tr = ∅
TR ∈ ND × ND ∧ TR ⊆ tr ∧ ∀(x, y) · (x, y ∈ TR ⇒ x /∈ ch(y))INITIALISATION
ld :∈ ND ‖ch = ND × {∅} ‖ac = ND × {∅} ‖dr := ∅ ‖dt := ∅ ‖
TR := ∅ ‖ REQ := ∅ ‖ACK := ∅EVENTSsend_req = Lo
al node xany x, y where

x ∈ ND − dr ∧ y ∈ ND − ac(x) ∧ nb(x) = ch(x) ∪ {y}then
REQ := REQ ∪ {x 7→ y} ‖ dr := dr ∪ {x}endsend_a
k = Lo
al node yany x, y where
x, y ∈ REQ ∧ y /∈ drthen
REQ := REQ −; {x 7→ y} ‖ ACK := ACK ∪ {x 7→ y} ‖
ac(y) := ac(y) ∪ {x}endsolve_
nt = Lo
al node yany x, y where
x, y ∈ REQ ∧ y ∈ dr ∧ ctr(x) < ctr(y)then
REQ := REQ −; {x 7→ y} ‖ ACK := ACK ∪ {x 7→ y} ‖
ac(y) := ac(y) ∪ {x}endprogress = Lo
al node xany x, y where
x, y ∈ ACKthen
ACK := ACK − {x 7→ y} ‖ TR := TR ∪ {x 7→ y} ‖ dt := dt ∪ {x}endre
eive_
nf = Lo
al node yany x, y where
x, y ∈ TRthen
TR := TR −; {x 7→ y} ‖ ch(y) := ch(y) ∪ {x}endENDFig. 25. Sixth model leaderelection5 for the distributed leader ele
tion algorithm

126 Dominique Cansell and Dominique Méry
nb ∈ ND → P(ND)
ch ∈ ND → P(ND)
ac ∈ ND → P(ND)
dr ⊆ ND
dt ⊆ ND

∀x · (x ∈ ND ⇒ nb(x) = g−1[{x}])
∀x · (x ∈ ND ⇒ ch(x) ⊆ tr−1[{x}])
∀x · (x ∈ ND ⇒ ac(x) = ack−1[{x}])
dr = dom (req)
dt = dom (tr)Given a node x, the sets nb(x), ch(x), and ac(x) are supposed to be storedlo
ally within the node. As the varying sets ch(x) and ac(x) are subsets ofthe
onstant set nb(x), it is
ertainly possible to further re�ne their en
oding.Likewise the two sets dr and dt still appears to be global, but they
an
learlybe en
oded lo
ally in ea
h node by means of lo
al boolean variables.It is worth noti
ing that the de�nition of variable ch above is not given interms of an equality, rather in terms of an in
lusion (this is thus not really ade�nition). This is due to the fa
t that the set ch(y)
annot be updated whilethe event progress takes pla
e: this is be
ause this event
an only a
t on itslo
al data.A new event in leaderelection3, re
eive_
nf (for re
eive
on�rmation) isthus ne
essary to update the set ch(y). Next are the re�nement of the variousevents. ele
t =any x where

x ∈ ND ∧
nb(x) = ch(x)then
ld := xend

send_req =any x, y where
x ∈ ND − dr ∧
y ∈ ND − ac(x) ∧
nb(x) = ch(x) ∪ {y}then
req := req ∪ {x 7→ y} ‖
dr := dr ∪ {x}endsend_a
k =any x, y where

x, y ∈ req ∧
x /∈ ac(y) ∧
y /∈ drthen
ack := ack ∪ {x 7→ y} ‖
ac(y) := ac(y) ∪ {x}end

solve_
nt =any x, y where
x, y ∈ req ∧
x /∈ ac(y) ∧
y ∈ dr ∧
ctr(x) < ctr(y)then
ack := ack ∪ {x 7→ y} ‖
ac(y) := ac(y) ∪ {x}end

The event-B Modelling Method 127progress =any x, y where
x, y ∈ ack ∧
x /∈ dtthen
tr := tr ∪ {x 7→ y} ‖
dt := dt ∪ {x}end

re
eive_
nf =any x, y where
x, y ∈ tr ∧
x /∈ ch(y)then
ch(y) := ch(y) ∪ {x}endProofs that these events
orre
tly re�ne their respe
tive abstra
tions arete
hni
ally trivial. We now give in the following table, the lo
al node in
hargeof ea
h event as en
oded above

event nodeele
t xsend_req xsend_a
k ysolve_
nt yprogress xre
eive_
nf yThe reader
ould be surprised yet to see formulas su
h as req := req ∪
{x 7→ y} or x, y ∈ req. They
orrespond in fa
t to writing and reading opera-tions done by
orresponding lo
al nodes as explained in the following table:

formula explanation
req := req ∪ {x 7→ y} x sends a request to y
x, y ∈ req y reads a request from x
ack := ack ∪ {x 7→ y} y sends an a
knowledgement to x
x, y ∈ ack x reads an a
knowledgement from y
tr := tr ∪ {x 7→ y} x sends a
on�rmation to y
x, y ∈ tr y reads a
on�rmation from yThe total number of proofs (all done me
hani
ally with Atelier B [52℄and B4free/Cli
k'n'Prove [53℄) amounts to 106, where 24 required an easyintera
tion. Proofs help us to understand the
ontention problem and ther�le of graph properties in the
orre
tness of the solution. The re�nementsgradually introdu
e the various invariants of the system. No assumption ismade on the size of the network. The proof leads us to the dis
overy of the
on�rmation event to get the
omplete
orre
tness and we
hoose to introdu
ea priority me
hanism to solve the
ontention, whi
h is not the solution of theIEEE 1394 proto
ol: a new leader ele
tion distributed algorithm is proposed.

ACK,REQ and TR model
ommuni
ation
hannels; they
ontain messageswhi
h are
urrently sent and not yet re
eived. We give the algorithm for thelo
al node x and x sends messages to another node y. We assume that ea
hsite has a unique number and ctr is de�ned by this assignment.

128 Dominique Cansell and Dominique MéryLeader Ele
tion AlgorithmLo
al Node x ∈ NDLo
al variables nb, ch, ac ⊆ ND, ld ∈ ND, dr, dt ∈ Boolif nb = ch then ld := x �if mes(y, ack) ∈ ACKthen
send(mes(x, tr), y) ‖ dt := dt ∪ {y} ‖
ACK := ACK − {mes(y, ack)} �if ¬dr ∧ y /∈ ac ∧ nb = ch ∪ {y}then
send(mes(x, req), y) ‖ dr := TRUE �if mes(y, req) ∈ REQ ∧ ¬drthen
send(mes(x, ack), y) ‖ ac := ac ∪ {y} ‖
REQ := REQ − {mes(y, req)} �if mes(y, req) ∈ REQ ∧ dr ∧ ctr(y) < ctr(x)then
send(mes(x, ack), y) ‖ ac := ac ∪ {y} ‖
REQ := REQ − {mes(y, req)} �if mes(y, tr) ∈ TRthen
ch := ch ∪ {y} ‖ TR := TR − {mes(y, tr)} �We have used programming-like notations for modelling messages
ommu-ni
ations (see model leaderelection5 25) and we detail the meaning of ea
h
ommuni
ation primitive:

• send(mes(x, req), y) adds the message mes(x, req) to REQ.
• send(mes(x, ack), y) adds the message mes(x, req) to ACK.
• send(mes(x, tr), y) adds the message mes(x, req) to TR.Our algorithm is
orre
t with respe
t to the invariant of the development;we have not mentionned the question of termination. The termination is de-rived, when one assumes a minimal fairness for ea
h site: if a site
an triggeran event, it will eventually trigger it, as long as it remains enabled.8 Con
lusionB gathers a large
ommunity of users whose
ontributions go beyond the s
opeof this do
ument; we fo
us our topi
s on the event B approa
h to illustratethe foundations of B. Before to
on
lude our text, we should
omplete the Blands
ape by an outline of work on B and with B.

The event-B Modelling Method 1298.1 Work on B and with BThe series of
onferen
es [24�26, 28, 65, 104℄ on B (in asso
iation with the Z
ommunity) and books [2, 61, 66, 75, 101℄ on B demonstrate the strong a
tivityon B. The expressivity of the B language lead to three kinds of work using
on
epts of B: extension of the B method,
ombination of B with anotherapproa
h and appli
ations of B. We have already mentioned appli
ations ofthe B method in the introdu
tion and, now, we sket
h extensions of B andproposals to integrate B with other methods:Extending the B MethodThe
on
ept of event as introdu
ed in B by Abrial [3℄ a
ts on the globalstate spa
e of the system and has no parameter; on the
ontrary, Papatsarasand Stoddart [92℄
ontrast this global style of development with one basedon intera
ting
omponents whi
h
ommuni
ate by means of shared events;parameters in events are permitted. The parametrisation of events is also
onsidered by Butler and Walden [35℄ who are implementing a
tion systemsin the B AMN.Events may or may not happen and new modalities are required to man-age them; the language of assertions of B is be
oming too poor to expresstemporal properties like liveness, for instan
e. Abrial and Mussat [15℄ intro-du
e modalities into abstra
t systems and develop proof obligations relatedto liveness properties; Méry [83℄ shows how the B
on
epts
an be easily usedto deal with liveness and fairness properties. Bellegarde et al [23℄ analyse theextension of B using the LTL logi
 and the impa
t on the re�nement of eventsystems. Problems are related to the re�nement of systems while maintainingliveness and even fairness properties; it is di�
ult and in many
ases not pos-sible, be
ause the re�nement maintains previously validated properties of theabstra
t model and it
an not maintain every liveness property.Re
ently, M
Iver et al [82, 89℄ extend the Generalized Substitution Lan-guage to handle probability in B; an abstra
t probabilisti

hoi
e is added toB operators. A methodology is proposed to use this extension.Combining B with Another FormalimThe limited expressivity of the B language has inspired work on several pro-posals. Butler [33℄ investigates a mixed language in
luding B AMN and CSP;CSP is used to stru
ture abstra
t ma
hines; the idea is exploited by S
hneiderand Treharne [99, 105℄ who
ontrol B ma
hines.Sin
e diagrammati
 formalisms o�er a visual representation of models,another integration of B with UML is a
hieved by Butler [34℄ and by Le Danget al [77�79℄; B provides a semanti
al framework to UML
omponents andallows one to analyse UML models. An interesting problem would be to studythe impa
t of the B re�nement into UML models.

130 Dominique Cansell and Dominique MéryMikhailov and Butler [86℄
ombine the theorem proving and the model
he
king and fo
us on the B-method and a theorem proving tool asso
iatedwith it, and the Alloy spe
i�
ation notation and its model
he
ker Alloy Con-straint Analyser. Software development in B
an be assisted using Alloy andAlloy
an be used for verifying re�nement of abstra
t spe
i�
ations.8.2 On the Proof Pro
essThe proof pro
ess is supported by a proof assistant whi
h is either a part of theenvironment
alled Atelier B [52℄ , or an environment
alled Cli
k'n'Prove [8℄.A free version is available [53℄. Works on theories and reusing theories havebeen addressed by J.-R. Abrial et all in [11℄.8.3 Final RemarksThe design of (software) systems is an a
tivity based on logi
o-mathemati
al
on
epts su
h as set-theoreti
al de�nitions; it gives rise to proof obligationsthat
apture the essen
e of its
orre
tness. The use of theoreti
al
on
epts ismainly due to the requirements of safety and quality of developed systems; itappears that the mathemati
s
an help in improving the quality of softwaresystems. B is a method that
an help the designers to
onstru
t safer systemsand it provides a realisti
 framework for developing a pragmati
 engineering.Mathemati
al theories [11℄
an be derived from s
rat
h or reused; in forth
om-ing work, me
hanisms for re-usability of developments will demonstrate thein
reasing power of the appli
ability of B to realisti

ase studies [10, 12, 42℄.Tools are already very helpful and will evolve towards a tool-set for developingsystems. The proof tool is probably a
ru
ial element in the B approa
h andre
ent developments of the prover,
ombined with the re�nement, validatesthe appli
ability of the B method to derive
orre
t rea
tive systems from ab-stra
t spe
i�
ations. Another promising point is the introdu
tion of patternsin the event B methodology. In [4℄, Abrial des
ribes the new B method mainlyrelated to B events; the proje
t RODIN [69, 96℄ aims to
reate a methodologyand supporting open tool platform for the
ost e�e
tive rigorous develop-ment of dependable
omplex software systems and servi
es, espe
ially usingthe event B method; it will provide a suitable framework for further work onevent B.A
knowledgementsWe thank J.-R. Abrial for his permanent help, support and
omments;Dines Bjoerner and Martin Henson have a

epted a long delay for obtainingLATEX�les and we thank them for their support. It was a pleasure to spendtwo weeks with Dines and Martin in Slovakia and we espe
ially enjoy the dailypedagogi
al meetings. Thanks!

The event-B Modelling Method 131Referen
es1. D. Abraham, D. Cansell, P. Dits
h, D. Méry, and C. Pro
h. Synthesis of theQoS for digital TV servi
es. In First International Workshop on In
entiveBased Computing - IBC'05, Amsterdam, The Netherlands, 2005.2. J.-R. Abrial. The B book - Assigning Programs to Meanings. Cambridge Uni-versity Press, 1996.3. J.-R. Abrial. Extending b without
hanging it (for developing distributedsystems). In H. Habrias, editor, 1st Conferen
e on the B method [65℄, pages169�190, November 1996.4. J.-R. Abrial. B#: Toward a synthesis between z and b. In D. Bert andM. Walden, editors, 3nd International Conferen
e of B and Z Users - ZB 2003,Turku, Finland, Le
tures Notes in Computer S
ien
e. Springer, June 2003.5. J.-R. Abrial. B#: Toward a synthesis between z and b. In ZB [26℄, pages168�177, 2003.6. J.-R. Abrial. Event based sequential program development: Appli
ation to
onstru
ting a pointer program. In FME [16℄, pages 51�74, 2003.7. J.-R. Abrial. Formal methods in industry: a
hievements, problems, future. InOsterweil et al. [90℄, pages 761�768.8. J.-R. Abrial and D. Cansell. Cli
k'n prove: Intera
tive proofs within set theory.In TPHOLs [21℄, pages 1�24, 2003.9. J.-R. Abrial and D. Cansell. Formal
onstru
tion of a non-blo
king
on
urrentqueue algorithm (a
ase study in atomi
ity). J. UCS, 11(5):744�770, 2005.10. J.-R. Abrial and D. Cansell. Formal
onstru
tion of a non-blo
king
on
urrentqueue algorithm (a
ase study in atomi
ity). J. UCS, 11(5):744�770, 2005.11. J.-R. Abrial, D. Cansell, and G. La�tte. "higher-order" mathemati
s in b. InBert et al. [25℄, pages 370�393.12. J.-R. Abrial, D. Cansell, and D. Méry. A Me
hani
ally Proved and In
re-mental Development of IEEE 1394 Tree Identify Proto
ol. Formal Aspe
ts ofComputing, 14(3):215�227, 2003.13. J.-R. Abrial, D. Cansell, and D. Méry. Formal derivation of spanning treesalgorithms. In Bert et al. [26℄, pages 457�476.14. J.-R. Abrial, D. Cansell, and D. Méry. Re�nement and rea
hability in eventb.In Treharne et al. [104℄, pages 222�241.15. Jean-Raymond Abrial and Louis Mussat. Introdu
ing Dynami
 Constraints inB. In B [24℄, pages 83�128, 1998.16. K. Araki, S. Gnesi, and D. Mandrioli, editors. FME 2003: Formal Methods,International Symposium of Formal Methods Europe, Pisa, Italy, September8-14, 2003, Pro
eedings, volume 2805 of Le
ture Notes in Computer S
ien
e.Springer, 2003.17. R. Ba
k. On
orre
t re�nement of programs. Journal of Computer and SystemS
ien
es, 23(1):49�68, 1979.18. R. Ba
k. A
al
ulus of re�nements for program derivations. A
ta Informati
a,25:593�624, 1998.19. R. Ba
k and J. von Wright. Re�nement Cal
ulus A Systemati
 Introdu
tion.Graduate Texts in Computer S
ien
e. Springer, 1998.20. J. P. Banâtre, A. Coutant, and D. Le Métayer. The γ-model and its dis
iplineof programming. S
ien
e of Computer Programming, 15:55�77, 1990.

132 Dominique Cansell and Dominique Méry21. D. A. Basin and B. Wol�, editors. Theorem Proving in Higher Order Log-i
s, 16th International Conferen
e, TPHOLs 2003, Rom, Italy, September 8-12, 2003, Pro
eedings, volume 2758 of Le
ture Notes in Computer S
ien
e.Springer, 2003.22. P. Behm, P. Benoit, A. Faivre, and J.-M.Meynadier. METEOR : A su

essfulappli
ation of B in a large proje
t. In Pro
eedings of FM'99: World Congresson Formal Methods, Le
ture Notes in Computer S
ien
e, pages 369�387, 1999.23. F. Bellegarde, C. Darlot, J. Julliand, and O. Kou
hnarenko. Reformulate dy-nami
 properties during b re�nement and forget variants and loop invariants.In ZB [28℄, pages 230�249, 2000.24. D. Bert, editor. B'98: Re
ent Advan
es in the Development and Use of theB Method, Se
ond International B Conferen
e, Montpellier, Fran
e, April 22-24, 1998, Pro
eedings, volume 1393 of Le
ture Notes in Computer S
ien
e.Springer, 1998.25. D. Bert, J. P. Bowen, M. C. Henson, and K. Robinson, editors. ZB 2002: FormalSpe
i�
ation and Development in Z and B, 2nd International Conferen
e of Band Z Users, Grenoble, Fran
e, January 23-25, 2002, Pro
eedings, volume 2272of Le
ture Notes in Computer S
ien
e. Springer, 2002.26. D. Bert, J. P. Bowen, S. King, and M. A. Waldén, editors. ZB 2003: FormalSpe
i�
ation and Development in Z and B, Third International Conferen
e ofB and Z Users, Turku, Finland, June 4-6, 2003, Pro
eedings, volume 2651 ofLe
ture Notes in Computer S
ien
e. Springer, 2003.27. Dines Bjørner and Martin C. Henson, editors. Logi
s of Spe
i�
ation Lan-guages. EATCS Textbook in Computer S
ien
e. Springer, 2007.28. J. P. Bowen, S. Dunne, A. Galloway, and S. King, editors. ZB 2000: FormalSpe
i�
ation and Development in Z and B, First International Conferen
e ofB and Z Users, York, UK, August 29 - September 2, 2000, Pro
eedings, volume1878 of Le
ture Notes in Computer S
ien
e. Springer, 2000.29. M. Bubak, J. Dongarra, and J. Wasniewski, editors. Re
ent Advan
es in Paral-lel Virtual Ma
hine and Message Passing Interfa
e, 4th European PVM/MPIUsers' Group Meeting, Crakow, Poland, November 3-5, 1997, Pro
eedings, vol-ume 1332 of Le
ture Notes in Computer S
ien
e. Springer, 1997.30. M. Bü
hi and R. Ba
k. Compositional symmetri
 sharing in b. In WorldCongress on Formal Methods [106℄, pages 431�451, 1999.31. L. Burdy. Traitement des expressions dépourvues de sens de la théorie desensembles - Appli
ation à la méthode B. PhD thesis, CNAM, 2000.32. M. Butler. Stepwise Re�nement of Communi
ating Systems. S
ien
e of Com-puter Programming, 27:139�173, 1996.33. M. Butler. CSP2B: A Pra
ti
al Approa
h To Combining CSP and B. FormalAspe
ts of Computing, 12:182�196, 200.34. M. Butler and C. Snook. Verifying dynami
 properties of UML models bytranslation to the B language and toolkit. InUML 2000 WORKSHOP Dynami
Behaviour in UML Models: Semanti
 Questions, York, O
tober 2000.35. M. Butler and M. Walden. Parallel Programming with the B Method. In Pro-gram Development by Re�nement Cases Studies Using the B Method, volume[101℄ of FACIT, pages 183�195. Springer, 1998.36. E. Börger and R. Stärk. Abstra
t State Ma
hines: A Method for High-LevelSystem Design and Analysis. Springer, 2003.37. D. Cansell. The Seventeen Provers of the World, volume 3600 of LNAI,
hapterB Method, pages 142�150. Springer, 2006.

The event-B Modelling Method 13338. D. Cansell, G. Gopalakrishnan, M. D. Jones, D. Méry, and Airy Weinzoep�en.In
remental proof of the produ
er/
onsumer property for the p
i proto
ol. InZB [25℄, pages 22�41, 2002.39. D. Cansell and D. Méry. Abstra
tion and re�nement of features. In S. Gilmoreet M. Ryan, editor, Language Constru
ts for Designing Features. Springer,2000.40. D. Cansell and D. Méry. Développement de fon
tions dé�nies ré
ursivement enB : Appli
ation du B événementiel. Rapport de re
her
he, Laboratoire Lorrainde Re
her
he en Informatique et ses Appli
ations, January 2002.41. D. Cansell and D. Méry. Logi
al foundations of the B method. Computers andInformati
s, 22, 2003.42. D. Cansell and D. Méry. Formal and in
remental
onstru
tion of distributedalgorithms: On the distributed referen
e
ounting algorithm. Theoreti
al Com-puter S
ien
e, 2006.43. D. Cansell and D. Méry. In
remental parametri
 development of greedy al-gorithms. In Automati
 Veri�
ation of Criti
al Systems - AVoCS 2006, 2006-09, Automati
 Veri�
ation of Criti
al Systems (AVoCS 2006), pages 48�62,Nan
y/Fran
e, 2006.44. D. Cansell and D. Méry. In
remental parametri
 development of greedy algo-rithms. In Stephan Merz and Tobias Nipkow, editors, Automati
 Veri�
ationof Criti
al Systems - AVoCS 2006, 2006-09, Automati
 Veri�
ation of Criti
alSystems (AVoCS 2006), pages 48�62, Nan
y/Fran
e, 2006.45. D. Cansell, D. Méry, and C. Pro
h. Modelling system
 s
heduler by re�nement.In IEEE ISoLA Workshop on Leveraging Appli
ations of Formal Methods, Ver-i�
ation, and Validation - ISOLA'05, Columbia, U.S.A., 2005.46. D. Cansell and D. Méry. Software Spe
i�
ation Methods An Overview Using aCase Study, volume [61℄,
hapter Event B. Hermès, 2006. ISBN: 1905209347.47. N. Cariero and D. Gelernter. How to write parallel programs: a �rst
ourse.The MIT Press, 1990.48. J. Chalopin and Y. Métivier. A bridge between the asyn
hronous messagepassing model and lo
al
omputations in graphs. In MFCS [70℄, pages 212�223, 2005.49. K. M. Chandy and J. Misra. Parallel Program Design A Foundation. Addison-Wesley Publishing Company, 1988. ISBN 0-201-05866-9.50. M. Chaudron. Notions of Re�nement for a Coordination Language forGAMMA. Te
hni
al report, Leiden University, The Netherlands, 1997.51. E. M. Clarke, O. Grumberg, and D. A. Peled. Model Che
king. The MIT Press,2000.52. ClearSy, Aix-en-Proven
e (F). Atelier B, 2002. Version 3.6.53. ClearSy, Aix-en-Proven
e (F). B4FREE, 2004. http://www.b4free.
om.54. J. Cooke, S. Maharaj, J. Romijn, and C. Shankland. Editorial. Formal Asp.Comput., 14(3):199, 2003.55. T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introdu
tion toAlgorithms. MIT Press and M
Graw-Hill, 2001.56. M. Devillers, D. Gri�oen, J. Romin, and F. Vaandrager. Veri�
ation of aLeader Ele
tion Proto
ol: Formal Methods Applied to IEEE 1394. FormalMethods in System Design, 16:307�320, 2000. Kluwer A
ademi
 Publishers.57. E. W. Dijkstra. A Dis
ipline of Programming. Prenti
e-Hall, 1976.58. E. W. Dijkstra and C. S. S
holten. Predi
ate Cal
ulus and Program Semanti
s.Texts and Monographs in Computer S
ien
e. Springer Verlag, 1990.

134 Dominique Cansell and Dominique Méry59. H. Ehrig and B. Mahr. Fundamentals of Algebrai
 Spe
i�
ation 1, Equationsand Initial Semanti
s. EATCS Monographs on Theoreti
al Computer S
ien
e.Springer, w. brauer and r. rozenberg and a. salomaa edition, 1985.60. John Fitzgerald. The Typed Logi
 of Partial Fun
tions and the Vienna Devel-opment Method, pages 431�465. Springer, 2007. See [27℄.61. M. Frappier and H. Habrias, editors. Software Spe
i�
ation Methods AnOverview Using a Case Study. Hermes S
ien
e Publishing, London, England,April 2006. ISBN: 1905209347.62. O. Galibert. YLC, A C++ Linda System on Top of PVM. In PVM/MPI [29℄,pages 99�106, 1997.63. M.-C. Gaudel and J. Wood
o
k, editors. FME '96: Industrial Bene�t and Ad-van
es in Formal Methods, Third International Symposium of Formal MethodsEurope, Co-Sponsored by IFIP WG 14.3, Oxford, UK, Mar
h 18-22, 1996, Pro-
eedings, volume 1051 of Le
ture Notes in Computer S
ien
e. Springer, 1996.64. Y. Gurevit
h. Spe
i�
ation and Validation Methods,
hapter "Evolving Alge-bras 1993: Lipari Guide", pages 9�36. Oxford University Press, 1995.65. H. Habrias, editor. First Conferen
e on the B Method, Nantes, Fran
e, April22-24 1996. IRIN-IUT de Nantes, IRIN-IUT de Nantes. ISBN 2-906082-25-2.66. H. Habrias. Spé
i�
ation formelle ave
 B. Hermès, 2001.67. Martin C. Henson, Moshe Deuts
h, and Steve Reeves. Z Logi
 and its Appli-
ations, pages 467�569. Springer, 2007. See [27℄.68. J. Hoare, J. Di
k, D. Neilson, and I. Holm Sørensen. Applying the B te
hnolo-gies on CICS. In FME [63℄, pages 74�84. Springer, 1996.69. Stefan Hallerstede J.-R. Abrial, M. Butler. An open extensible tool environ-ment for event-b. In ICFEM 2006 Eighth International Conferen
e on FormalEngineering Methods, November 2006.70. J. Jedrzejowi
z and A. Szepietowski, editors. Mathemati
al Foundations ofComputer S
ien
e 2005, 30th International Symposium, MFCS 2005, Gdansk,Poland, August 29 - September 2, 2005, Pro
eedings, volume 3618 of Le
tureNotes in Computer S
ien
e. Springer, 2005.71. C. B. Jones. Systemati
 Software Development Using VDM. Prenti
e-HallInternational, 1986.72. J. B. Kruskal. On the shortest spanning subtree and the traveling salesmanproblem. Pro
. Am. Math. So
., 7:48�50, 1956.73. L. Lamport. A temporal logi
 of a
tions. ACM Transa
tions on ProgrammingLanguages and Systems, 16(3):872�923, May 1994.74. L. Lamport. Spe
ifying Systems: The TLA++ Language and Tools for Hard-ware and Software Engineers. Addison-Wesley, 2002.75. K. Lano. The B Language and Method - A Guide to rPa
ti
al Formal Devel-opment. FACIT. Springer, 1996.76. K. Lano, J. Bi
arregui, and A. San
hez. Invariant-based synthesis and
om-position of
ontrol algorithms using B. In FM'99 � B Users Group Meeting� Applying B in an industrial
ontext: Tools, Lessons and Te
hniques, pages69�86, 1999.77. H. Ledang and J. Souquières. Formalizing UML behavioral diagrams withB. In Tenth OOPSLA Workshop on Behavioral Semanti
s : Ba
k to Basi
s ,Tampa Bay, Florida, USA, O
t 2001.78. H. Ledang and J. Souquières. Modeling
lass operations in B : appli
ation toUML behavioral diagrams. In IEEE Computer So
iety, editor, 16th IEEE In-

The event-B Modelling Method 135ternational Conferen
e on Automated Software Engineering - ASE'2001, LoewsCoronado Bay, San Diego, USA, Nov 2001.79. H. Ledang and J. Souquières. Contributions for modelling UML state-
hartsin B. In Springer, editor, Third International Conferen
e on Integrated FormalMethods - IFM'2002, Turku, Finland, May 2002.80. B-Core(UK) Ltd. B-Toolkit User's Manual, relase 3.2 edition, 1996.81. Z. Manna. Mathemati
al Theory of Computation. Ma
 Graw Hill, 1974.82. A. M
Iver, C. Morgan, and T. S. Hoang. Probabilisti
 termination in B. InBert et al. [26℄, pages 216�239.83. D. Méry. Requirements for a temporal B: Assigning Temporal Meaning toAbstra
t Ma
hines ... and to Abstra
t Systems. In A. Galloway and K. Tagu
hi,editors, IFM'99 Integrated Formal Methods 1999, Workshop on ComputingS
ien
e, YORK, June 1999.84. D. Méry, D. Cansell, C. Pro
h, D. Abraham, and P. Dits
h. The
hallenge ofQoS for digital television servi
es. EBU Te
hni
al Review, April 2005.85. Stephan Merz. The Spe
i�
ation Language TLA+, pages 381�430. Springer,2007. See [27℄.86. L. Mikhailov and M. J. Butler. An approa
h to
ombining b and alloy. InZB [25℄, pages 140�161, 2002.87. L. Moreau and J. Duprat. A Constru
tion of Distributed Referen
e Counting.A
ta Informati
a, 37:563�595, 2001.88. C. Morgan. Programming from Spe
i�
ations. Prenti
e Hall International Se-ries in Computer S
ien
e. Prenti
e Hall, 1990.89. C. Morgan, T. S. Hoang, and J.-R. Abrial. The
hallenge of probabilisti
 eventB - extended abstra
t. In Treharne et al. [104℄, pages 162�171.90. Leon J. Osterweil, H. Dieter Romba
h, and Mary Lou So�a, editors. 28th Inter-national Conferen
e on Software Engineering (ICSE 2006), Shanghai, China,May 20-28, 2006. ACM, 2006.91. S. Owi
ki and D. Gries. An axiomati
 proof te
hnique for parallel programs i.A
ta Informati
a, 6:319�340, 1976.92. A. Papatsaras and B. Stoddart. Global and
ommuni
ating state ma
hinemodels in event driven b: A simple railway
ase study. In Bert et al. [25℄, pages458�476.93. M.-L. Potet and Y. Rouzaud. Composition and re�nement in the b-method.In B [24℄, pages 46�65, 1998.94. R. C. Prim. Shortest
onne
tion and some generalizations. Bell Syst. Te
h. J.,36, 1957.95. C. Pro
h. Assistan
e au développement in
rémental et prouvé de systèmesenfouis. PhD thesis, Université Henri Poin
aré Nan
y 1, 2006.96. proje
t RODIN. Rigorous open development environment for
omplex systems.http://rodin-b-sharp.sour
eforge.net/, 2004. 2004�2007.97. Wolfgang Reisig. Abstra
t State Ma
hines for the Classroom, pages 1�32.Springer, 2007. See [27℄.98. H. Jr Rogers. Theory of Re
ursive Fun
tions and E�e
tive Computability. TheMIT Press, 1967.99. S. S
hneider and H. Treharne. Communi
ating B ma
hines. In ZB [25℄, pages416�435, 2002.100. S
ienti�
 Computing Asso
iates in
, 246 Chur
h Street, Suite 307 New Haven,CT 06510 USA. Original LINDA C-Linda Referen
e manual, 1990.

136 Dominique Cansell and Dominique Méry101. E. Sekerinski and K. Sere, editors. Program Development by Re�nement -Cases Studies Using the B Method. FACIT. Springer, 1998.102. J. M. Spivey. Understanding Z: a spe
i�
ation language and its formal seman-ti
s. Cambridge University Press, 1987.103. R. Stärk, J. S
hmid, and E. Börger. Java and the Java Virtual Ma
hine.Springer, 1998.104. H. Treharne, S. King, M. C. Henson, and S. A. S
hneider, editors. ZB 2005:Formal Spe
i�
ation and Development in Z and B, 4th International Confer-en
e of B and Z Users, Guildford, UK, April 13-15, 2005, Pro
eedings, volume3455 of Le
ture Notes in Computer S
ien
e. Springer, 2005.105. H. Treharne and S. S
hneider. How to drive a B ma
hine. In ZB [28℄, pages188�208, 2000.106. J. M. Wing, J. Wood
o
k, and J. Davies, editors. FM'99 - Formal Methods,World Congress on Formal Methods in the Development of Computing Systems,Toulouse, Fran
e, September 20-24, 1999, Pro
eedings, Volume I, volume 1708of Le
ture Notes in Computer S
ien
e. Springer, 1999.Event B IndexesEvent B IndexesSymbol IndexSymbol Index
BAA(x, x′), 60
:=, 42
:∈, 42
BA(e)(x, x′), 48
BAC(y, y′), 60
S1; S2, 42
[S]P , 42skip, 42
2, 42
⇒, 42
⊲− , 38
⊳− , 38

∩, 37
×, 37
∪, 37
∅, 37
ǫ, 37
∈, 37
↔, 38
�, 38
7→, 37

P(s), 37
7→, 38
7→, 37

�, 38
→, 37
⊳− , 38prdx(S), 44

f [{x}], 37
r[w], 38
r−1, 38
r1; r2, 38
x :, R(x0, x)42
x : R(x0, x), 42
grd(e)(x), 4842DEFINITIONS, 59ASSERTIONS, 41, 51CONSTANTS, 41, 51EVENTS, 53, 60INITIALISATION, 51INVARIANT, 51MACHINE, 41, 51MODEL, 53OPERATIONS, 51

The event-B Modelling Method 137PROPERTIES, 41, 51REFINEMENT, 60REFINES, 60SETS, 41, 51VARIABLES, 51VARIANT, 60dom(S), 45pre(S), 44rel(S), 45id(s), 38abt, 44dom, 37, 38�s, 44mir, 44ran, 37, 38trm, 44

138 Dominique Cansell and Dominique MéryCon
ept IndexCon
ept Index
epsilon operator, 37(semi-)de
ision pro
edures, 41
hoi
e fun
tion, 37Aborted
omputations, 44abstra
t ma
hine, 40, 46abstra
t model, 46, 59abstra
t models, 51abstra
tion, 50algorithm, 64Anti-
o-restri
tion, 38Anti-restri
tion, 38assertions, 51assignment, 42AXIOMS, 39B ASSERTIONS, 39B Models, 50B PROPERTIES, 39before-after predi
ate, 48, 53before-after relation, 48Binary Relation, 38bounded
hoi
e, 42Cartesian produ
t, 37
lause ASSERTIONS, 41
lause PROPERTIES, 41
lause CONSTANTS, 40
lause SETS, 40
o-domain, 37Co-restri
tion, 38Composition of relations, 38
omprehension s
hema, 37
on
rete model, 59CONSEQUENCES, 39Constants, 37
ontention, 119
oordination paradigm, 82deadlo
k freedom, 48deadlo
k-freedom, 53de
omposition, 58defensive, 48

development, 50dis
harged, 64dis
rete abstra
tion, 50dis
rete model, 50dis
rete transition system, 50distributed algorithm, 111distributed leader ele
tion, 112Domain, 38empty set, 37enabledness
ondition, 48establishes, 42event, 42, 46, 48feasibility, 48feasible, 48, 53Feasible
omputations, 44fun
tion, 37generalized assignment, 42generalized substitution, 42generous, 47gluing invariant, 59guard, 42, 48Identity, 38indu
tive invariant, 51internal
onsisten
y, 51interse
tion, 37invarian
e, 51invariant, 47, 48, 51, 52Inverse relation, 38lo
alization, 121messages
ommuni
ations, 128Mira
ulous
omputations, 44model, 36, 51, 52operation, 42, 46Overriding, 38pair, 37partial, 37Partial Fun
tion, 38power, 37

The event-B Modelling Method 139pre
ondition, 42, 46predi
ate transformer, 42priming, 48primitive re
ursive fun
tion, 64proje
t, 50proof engine, 41proof obligation, 47, 48, 51, 53proof obligations, 48proof pro
ess, 41proof-based development, 59proto
ol, 112prover, 41Range, 38re�nement, 50, 58, 59re�nement mapping, 59relation, 37relational style, 48Restri
tion, 38safety, 51, 52safety properties, 51sequen
ing, 42sequent
al
ulus, 41set, 37set
hoi
e, 42sorting, 82state, 42state variable, 51stuttering, 42stuttering-free, 59system, 50Systems, 50Terminating
omputations, 44total, 37transition, 42, 51unbounded
hoi
e, 42union, 37view, 50weakest-pre
ondition, 42

Contents
The event-B Modelling Method Con
epts and Case StudiesDominique Cansell, Dominique Méry . 331 Introdu
tion . 331.1 Overview of B . 331.2 Proof-based Development . 341.3 S
ope of the B Modelling . 341.4 Related Te
hniques . 351.5 Summary . 362 The B Language . 362.1 The B Language for Sets, Predi
ates and Logi
al Stru
tures . . . 362.2 The B Language of Transitions . 423 B Models . 503.1 Modelling Systems . 503.2 Proof-based Development in B . 594 Sequential Algorithms . 644.1 Primitive Re
ursive Fun
tions . 644.2 Other Ways to Compute Addition and Multipli
ation 704.3 Design of Sequential Algorithms . 805 Combining Coordination and Re�nement for Sorting 825.1 Introdu
tion . 825.2 A Famous Case Study: the Sorting Problem 845.3 Applying Two Sorting Paradigms . 855.4 Introdu
ing a Pivot and an Index . 905.5 A Set of Bounds and a Con
rete Pivot . 935.6 Implementation of the Tuple Spa
e by a Sta
k 945.7 Con
lusion . 976 Spanning Trees Algorithms . 996.1 Introdu
tion . 996.2 The Minimum Spanning Tree Problem . 996.3 Development of a Spanning Tree Algorithm 1006.4 Development of Prim's Algorithm . 105

142 Contents6.5 On the Theory of Trees . 1087 Design of Distributed Algorithms by Re�nement 1117.1 The Basi
 Mathemati
al Stru
ture . 1127.2 The First Model leaderelection0: the One-shot Ele
tion 1147.3 Re�ning the First Model leaderelection0 1147.4 Last Re�nements: Lo
alizationlo
alization 1218 Con
lusion . 1288.1 Work on B and with B . 1298.2 On the Proof Pro
ess . 1308.3 Final Remarks . 130Referen
es . 131se
tion subse
tion subse
tion

