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2 LORIA, Campus sienti�que, & Université Henri Poinaré Nany 1, BP 239,F�54506 Vandoeuvre-lés-Nany, Frane Dominique.Mery�loria.fr1 Introdution1.1 Overview of BClassial B is a state-based method developed by Abrial for speifying, design-ing and oding software systems. It is based on Zermelo-Fraenkel set theorywith the axiom of hoie. Sets are used for data modelling, Generalised Sub-stitutions are used to desribe state modi�ations, the re�nement alulus isused to relate models at varying levels of abstration, and there are a numberof struturing mehanisms (mahine, re�nement, implementation) whih areused in the organisation of a development. The �rst version of the B methodis extensively desribed in The B-Book [2℄. It is supported by the Atelier Btool [52℄ and by the B Toolkit [80℄.Central to the lassial B approah is the idea of a software operationwhih will perform aording to a given spei�ation if alled within a givenpre-ondition. Subsequent to the formulation of the lassial approah, Abrialand others have developed a more general approah in whih the notion ofevent is fundamental. An event has a �ring ondition (a guard) as opposedto a pre-ondition. It may �re when its guard is true. Event based modelshave proved useful in requirement analysis, modelling distributed systemsand in the disovery/design of both distributed and sequential programmingalgorithms.After extensive experiene with B, urrent work by Abrial is proposingthe formulation of a seond version of the method [4℄. This distills experienegained with the event based approah and provides a general framework forthe development of disrete systems. Although this widens the sope of themethod, the mathematial foundations of both versions of the method are thesame.



34 Dominique Cansell and Dominique Méry1.2 Proof-based DevelopmentProof-based development methods [2, 17, 88℄ integrate formal proof tehniquesin the development of software systems. The main idea is to start with avery abstrat model of the system under development. Details are gradu-ally added to this �rst model by building a sequene of more onrete ones.The relationship between two suessive models in this sequene is that ofre�nement [2, 17, 19, 49℄. The essene of the re�nement relationship is thatit preserves already proved system properties inluding safety properties andtermination.A development gives rise to a number of, so-alled, proof obligations, whihguarantee its orretness. Suh proof obligations are disharged by the prooftool using automati and interative proof proedures supported by a proofengine [52, 53℄.At the most abstrat level it is obligatory to desribe the stati propertiesof a model's data by means of an invariant prediate. This gives rise to proofobligations relating to the onsisteny of the model. They are required toensure that data properties whih are laimed to be invariant are preservedby the events or operations of the model. Eah re�nement step is assoiatedwith a further invariant whih relates the data of the more onrete model tothat of the abstrat model and states any additional invariant properties ofthe (possibly riher) onrete data model. These invariants, so-alled gluinginvariants are used in the formulation of the re�nement proof obligations.The goal of a B development is to obtain a proved model. Sine the devel-opment proess leads to a large number of proof obligations, the mastering ofproof omplexity is a ruial issue. Even if a proof tool is available, its e�etivepower is limited by lassial results over logial theories and we must distributethe omplexity of proofs over the omponents of the urrent development, e.g.by re�nement. Re�nement has the potential to derease the omplexity of theproof proess whilst allowing for traeability of requirements.B Models rarely need to make assumptions about the size of a systembeing modelled, e.g. the number of nodes in a network. This is in ontrast tomodel heking approahes [51℄. The prie to pay is to fae possibly omplexmathematial theories and di�ult proofs. The re-use of developed models andthe struturing mehanisms available in B help in dereasing the omplexity.Where B has been exerised on known di�ult problems, the result has oftenbeen a simpler proof development than has been ahieved by users of othermore monolithi tehniques [87℄.1.3 Sope of the B ModellingThe sope of the B method onerns the omplete proess of software andsystem development. Initially, the B method was mainly restrited to the de-velopment of software systems [22, 68, 76℄ but a wider sope for the methodhas emerged with the inorporation of the event based approah [3, 4, 15, 33,



The event-B Modelling Method 3535, 101℄ and is related to the systemati derivation of reative distributed sys-tems. Events are simply expressed in the rih syntax of the B language. Abrialand Mussat [15℄ introdue elements to handle liveness properties. The re�ne-ment of the event-based B method does not deal with fairness onstraints butintrodues expliit ounters to ensure the happening of abstrat events, whilenew events are introdued in a re�ned model. Among ase studies developedin B, we an mention the METEOR projet [22℄ for ontrolling train tra�,the PCI protool [38℄, the IEEE 1394 Tree Identify Protool [12℄. Finally, Bhas been ombined with CSP for handling ommuniations systems [32, 33℄and with ation systems [35, 101℄.The proposal an be ompared to ation systems [18℄, UNITY pro-grams [49℄ and TLA [73℄ spei�ations but there is no notion of abstratfairness like in TLA or in UNITY.1.4 Related TehniquesThe B method is a state-based method integrating set theory, prediate al-ulus and generalized substitution language. We brie�y ompare it to relatednotations.Like Z [67, 102℄, B is based on the ZF set theory; both notations sharethe same roots, but we an point to a number of interesting di�erenes. Zexpresses state hange by use of before and after prediates, whereas theprediate transformer semantis of B allows a notation whih is loser toprogramming. Invariants in Z are inorporated into operation desriptions andalter their meaning, whereas the invariant in B is heked against the statehanges desribed by operations and events to ensure onsisteny. Finally Bmakes a areful distintion between the logial properties of pre-onditionsand guards, whih are not learly distinguished in Z.The re�nement alulus used in B for de�ning the re�nement betweenmodels in the event-based B approah is very lose to Bak's ation systems,but tool support for ation systems appears to be less mehanized than B.TLA+ [74, 85℄ an be ompared to B, sine it inludes set theory with the
ǫ operator of Hilbert. The semantis of TLA temporal operators is expressedover traes of states whereas the semantis of B ations is expressed in theweakest preondition alulus. Both semantis are equivalent with respet tosafety properties, but the trae semantis of TLA+ allows an expression offairness and eventuality properties that is not diretly available in B.VDM [60, 71℄ is a method with similar objetives to lassial B. Like Bit uses partial funtions to model data, whih an lead to meaningless termsand prediates e.g. when a funtion is a applied outside its domain. VDMuses a speial three valued logi to deal with inde�niteness. B retains lassi-al two valued logi, whih simpli�es proof at the expense of requiring moreare with inde�niteness. Reent approahes to this problem will be mentionedlater. ASM [36, 64, 97℄ and B share ommon objetives related to the design



36 Dominique Cansell and Dominique Méryand the analysis of (software/hardware) systems. Both methods bridge thegap between human understanding and formulation of real-world problemsand the deployment of their omputer-based solutions. Eah has a simple si-enti� foundation: B is based on set theory and ASM is based on the algebraiframework with an abstrat state hange mehanism. An Abstrat State Ma-hine is de�ned by a signature, an abstrat state, a �nite olletion of rulesand a spei� rule; rules provide an operational style very useful for modellingspei�ation and programming mehanisms. Like B, ASM inludes a re�ne-ment relation for the inremental design of systems; the tool support of ASMis under development but it allows one to verify and to analyse ASMs. Inappliations, B seems to be more mature than ASM, even if ASM has severalreal suesses like the validation [103℄ of Java and the Java Virtual Mahine.1.5 SummaryNext setions provide a short desription of event B:
• the B language and elements on the lassial B method: syntax and se-mantis of operations, events, assertions, prediates, mahines, models.
• the B modelling language and a simple introdutory example: event B,re�nement, proof-based development.
• other setions illustrate the event B modelling method by ase studies:� Sequential algorithms.� Combining oordination and re�nement for sorting.� Spanning trees algorithms.� A distributed leader eletion algorithm.
• Final setion onludes the hapter on the B modelling tehniques and onongoing researhes.2 The B Language2.1 The B Language for Sets, Prediates and Logial StruturesThe development of a model starts by an analysis of the mathematial stru-ture: sets, onstants and properties over sets and onstants and we produethe mathematial landsape by requirements eliitation. However, the state-ment of mathematial properties an be expressed using di�erent assumedproperties; for instane, a onstant n is a natural number and is supposed tobe greater than 3 - lassially and formally written like n ∈ N ∧ n ≥ 3 - or aset of persons is not empty - lassially and formally written like persons 6= ∅.Abrial et al [11℄ develop a struture language whih allows to one to enodemathematial strutures and their aompanying theorems. Strutures im-prove the possibility of mehanized proofs but they are not yet in the urrent



The event-B Modelling Method 37version of the B tools; there is a lose onnetion with the struturing meh-anisms and the algebrai strutures [59℄, but the main di�erene is in theuse of sets rather than of abstrat data types. B mathematial strutures arebuilt with notations of set theory and we list the main notations (and theirmeanings) used in further subsetions; the omplete notation is desribed inthe B book of Abrial [2℄.Sets and PrediatesConstants an be de�ned using �rst order logi and set-theoretial nota-tions of B. A set an be de�ned using either the omprehension shema
{ x | x ∈ s ∧ P (x)}, or the Cartesian produt shema s × t or using operatorsover sets like power P(s) , intersetion ∩ and union ∪. y ∈ s is a prediatewhih an be sometimes simpli�ed either from y ∈ { x | x ∈ s ∧ P (x)}into y ∈ s ∧ P (y), or from x 7→ y ∈ s × t into x ∈ s ∧ y ∈ t, orfrom t ∈ P(s) into ∀ x . ( x ∈ t ⇒ x ∈ s) where x is a fresh variable. Apair is denoted either ( x , y ) or x 7→ y .A relation over two sets s and t is an element of P(s × t); a relation r hasa domain dom(r) and a o-domain ran(r) . A funtion f from the set s to theset t is a relation suh that eah element of dom(f) is related to at most oneelement of the set t.A funtion f is either partial f ∈ A 7→ B, or total f ∈ A → B→.Then, we an de�ne the term f(x) for every element x in dom(f) using thehoie funtion (f(x) = choice(f [{x}]) where f [{x}] is the subset of t, whoseelements are related to x by f . The hoie funtion assumes that there existsat least one element in the set, whih is not the ase of the ǫ operator thatan be applied to an empty set ∅ and returns some value. If x 7→ y ∈ f then
y = f(x) and f(x) is well de�ned, only if f is a funtion and x is in dom(f).We summarize in �gure 1, set-theoretial notations that an be used inthe writing of formal de�nitions related to onstants. In fat, the modellingof data is oriented by sets, relations and funtions; the task of the spei�er isthen to use e�etively those notations.A Simple Case StudySine we have a short spae for explaining B onepts, we use a very simplease study, namely the development of models for omputing the factorialfuntion; we an illustrate the expressivity of the B language of prediates.Other ase studies an be found in omplete work separately published (seefor instane, [2, 3, 9, 12, 13, 38, 42, 43℄). When onsidering the de�nition of afuntion, we an use di�erent styles to haraterize it. A funtion is mathe-matially de�ned as a (binary) relation over two sets, alled soure and targetand it satis�es the funtionality property. The set-theoretial framework ofB invites us to follow this way for de�ning funtions; however, a reursivede�nition of a given funtion is generally used. The reursive de�nition states



38 Dominique Cansell and Dominique MéryName Syntax De�nitionBinary Relation s ↔ t P(s × t)Composition of relations r1; r2 {x, y |x ∈ a ∧ y ∈ b ∧
∃z.(z ∈ c ∧ x, z ∈ r1 ∧ z, y ∈ r2)}Inverse relation r−1 {x, y|x ∈ P(a) ∧ y ∈ P(b) ∧ y, x ∈ r}Domain dom(r) {a |a ∈ s ∧ ∃b.(b ∈ t ∧ a 7→ b ∈ r)}Range ran(r) dom(r−1)Identity id(s) {x, y|x ∈ s ∧ y ∈ s ∧ x = y}Restrition s � r id(s); rCo-restrition r � s r; id(s)Anti-restrition s ⊳− r (dom(r) − s) � rAnti-o-restrition r ⊲− s r � (ran(r) − s)Image r[w] ran(w � r)Overriding q ⊳− r (dom(r) ⊳− q) ∪ rPartial Funtion s 7→ t {r | r ∈ s ↔ t ∧ (r−1; r) ⊆id(t)}Fig. 1. Set-theoretial notationsthat a given mathematial objet exists and that it is the least solution of a�xed-point equation. Hene, a �rst step of the B development proves that thefuntion de�ned by a relation is the least �xed-point of the given equation.Properties of the funtion might be assumed, but we prefer to advoate a styleof fully proved development with respet to a minimal set of assumptions. The�rst step enumerates a list of basi properties onsidered as axioms and the�nal step reahes a point where both de�nitions are proved to be equivalent.First, we de�ne the mathematial funtion factorial, in a lassial way;the �rst line states that factorial is a total funtion from N into N and thenext lines state that factorial satis�es a �xed-point and, by default, it issupposed to be the least �xed-point. factorial is a B onstant and has Bproperties :

factorial ∈ N −→ N ∧
factorial(0) = 1 ∧
∀n.(n ≥ 0 ⇒ factorial(n + 1) = (n + 1) × factorial(n))In previous work on B [40℄, we use this de�nition and write it as a B prop-erty (a logial assumption or an axiom of the urrent theory) but nothingtells us that the de�nition is onsistent and that it de�nes an existing fun-tion. A solution is to de�ne the factorial funtion using a �xed-point shemasuh that the factorial funtion is the least �xed-point of the given equa-tion over relations. The factorial funtion is the smallest relation satisfyingsome onditions and espeially the funtionality; the funtionality is statedas a logial onsequene of the B properties. The point is not new but weare able to introdue notions to students putting together �xed-point theory,set theory, theory of relations and funtions and the proess of validation by



The event-B Modelling Method 39proof (mehanially done by the prover). The omputation of the factorialfuntion starts by a de�nition of the factorial funtion whih is arefully andformally justi�ed using the theorem prover. factorial is still a B onstant butit is di�erently de�ned.The factorial funtion is a relation over natural numbers and it is de�nedby its graph over pairs of natural numbers:(AXIOMS OR B PROPERTIES)
factorial ∈ N ↔ N ∧
0 7→ 1 ∈ factorial ∧

∀(n, fn) ·





n 7→ fn ∈ factorial
⇒
n + 1 7→ (n + 1) × fn ∈ factorial



The factorial funtion satis�es the �xed-point equation and is the least�xed-point: (AXIOMS OR B PROPERTIES)
∀f ·













f ∈ N ↔ N ∧
0 7→ 1 ∈ f ∧
∀(n, fn).(n 7→ fn ∈ f ⇒ n + 1 7→ (n + 1) × fn ∈ f)

⇒
factorial ⊆ f











These last statements are B properties of the factorial funtion and fromthese B properties, we should derive the funtionality of the resulting least�xed-point: factorial is a funtion is a logial onsequene of the new de�ni-tion of factorial. (CONSEQUENCES OR B ASSERTIONS)
factorial ∈ N −→ N ∧
factorial(0) = 1 ∧
∀n.(n ∈ N ⇒ factorial(n + 1) = (n + 1) × factorial(n))Now, factorial is proved to be a funtion and no assumption onern-ing the funtionality is left unspei�ed or simply an assumption. Proofs arearried out using the �rst order prediate alulus together with set theoryand arithmeti. When we have proved that factorial is a funtion, it meansthat every derived property is e�etively obtained by a mehanial proess ofproof; the proof an be reused in another ase study, if neessary. The proof isan appliation of the indution priniple; every indutive property mentions aproperty over values of the underlying struture namely P(n); hene we shouldquantify over prediates and derive theorems in higher order logi [11℄. Usinga quanti�ation over subsets of a set, we an get higher order theorems. For in-stane, P(n) is represented by the following set {n|n ∈ NATURAL ∧ P(n)}



40 Dominique Cansell and Dominique Méryand the indutive property is stated as follows; the �rst expression is givenin the B language and the seond expression (equivalent to the �rst one) inlassial mathematial notation (su denotes the suessor funtion de�nedover natural numbers):B statement
∀P ·













P ⊆ N ∧
0 ∈ P ∧
succ[P ] ⊆ P

⇒
N ⊆ P )













lassial logial statement
∀P ·













P(n) a property on N ∧
P(0) ∧
∀n ≥ 0 · (P(n) ⇒ P(n + 1))

⇒
∀n ≥ 0 · P(n)











The higher-order aspet is ahieved by the use of set theory, whih o�ersthe possibility to quantify over all the subsets of a set. Suh quanti�ationgive indeed the possibility to limb up to higher-order in a way that is alwaysframed.The struture language introdued by Abrial et al [11℄ an be useful toprovide the reuse of already formally validated properties. It is then learthat the �rst step of our modelling proess is an analysis of the mathemati-al landsape. The analysis of properties is essential, when dealing with theinde�niteness of expressions and the work of Abrial et al [11℄ or the dotoralthesis of Burdy [31℄ propose di�erent ways to deal with this question. For in-stane, the existene of a funtion like factorial may appear obvious but thetehnique of modelling might lead to silly models, if no proof of de�nitenessis done. The proof of the funtionality of fatorial neessitates to instantiatethe variable P in the indutive property by the following set:
{n|n ∈ N ∧ 0..n � factorial ∈ 0..n −→ N}Now, we onsider the strutures in B used for organizing axioms, de�ni-tions, theorems and theories.Logial Strutures in BThe B language of prediates denoted BP for expressing data and propertiesombine set theory and �rst order prediate alulus with a simple arithmetitheory. The B environment an be used to derive theorems from axioms; Bprovides a simple way to express axioms and theorems using abstrat ma-hines without variables. It is a way to use the underlying B prover and toimplement the proof proess that we have already desribed.An abstrat mahine has a name m; the lause SETS ontains de�nitionsof sets in the problem; the lause CONSTANTS allows one to introdue infor-mation related to the mathematial struture of the problem to solve.



The event-B Modelling Method 41MACHINE
mSETS
sCONSTANTS
cPROPERTIES
P (s, c)ASSERTIONS
A(x)END

The lause PROPERTIES ontains the e�etivede�nitions of onstants: it is very importantto list arefully properties of onstants in away that an be easily used by the tool. Thelause ASSERTIONS ontains the list of theo-rems to be disharged by the proof engine. Theproof proess is based on the sequent alulusand the prover provides (semi-)deision proe-dures [52℄ for proving the validity of a givenlogial fat alled a sequent and allows one tobuild interatively the proof by applying pos-sible rules of sequent alulus.For instane, the mahine FACTORIAL_DEF introdues a new onstantalled factorial satisfying given properties in the previous lines. The funtion-ality of factorial is derived from the assumptions in the lause ASSERTIONS.MACHINE
FACTORIAL_DEFCONSTANTS
factorialPROPERTIES
factorial ∈ N ↔ N ∧
0 7→ 1 ∈ factorial ∧
∀(n, fn).(n 7→ fn ∈ factorial ⇒ n + 1 7→ (n + 1) × fn ∈ factorial) ∧

∀f ·













f ∈ N ↔ N ∧
0 7→ 1 ∈ f ∧
∀(n, fn).(n 7→ fn ∈ f ⇒ n + 1 7→ (n + 1) × fn ∈ f)

⇒
factorial ⊆ f











ASSERTIONS
factorial ∈ N −→ N ;
factorial(0) = 1 ;
∀n.(n ∈ N ⇒ factorial(n + 1) = (n + 1) × factorial(n))ENDThe interative prover breaks a sequent into simpler-to-prove sequents butthe user must know the global struture of the �nal proof. BP allows us tode�ne underlying mathematial strutures required for a given problem; nowwe should introdue how to speify states and how to desribe transitions overstates.



42 Dominique Cansell and Dominique Méry2.2 The B Language of TransitionsThe B language is not restrited to lassial set-theoretial notations and thesequent alulus; it inludes notations for de�ning transitions over states of themodel, alled generalized substitutions . In its simple form, x := E(x), a gen-eralized substitution looks like an assignment; the B language of generalizedsubstitutions alled GSL (Generalized Substitution Language) (see �gure 2)ontains syntatial strutures for expressing di�erent kinds of (states) tran-sitions. Generalized substitutions of GSL allow us to write operations in thelassial B approah [2℄; a restrition over GSL leads to events in the so alledevent-based B approah [4, 15℄. In the following sub-subsetions, we addressthe semantial issues of generalized substitutions and the di�erenes betweenoperations and events.Generalized SubstitutionsGeneralized substitutions provide a way to express transformations of statevariables of a given model. In the onstrut x := E(x), x denotes a vetor ofstate variables of the model, and E(x) a vetor of expressions of the same sizeas the vetor x. The interpretation we shall give here to this statement is nothowever that of an assignment statement. The lass of generalized substitu-tions ontains the following possible forms of generalized substitutions:
• x := E (assignment).
• skip (stuttering).
• P |S (preondition) (or pre P then S end).
• S2T (bounded hoie) (or hoie S1 or S2 END).
• P ⇒ S (guard) (or selet (orwhen) P then S end).
• @z.S (unbounded hoie).
• x :∈ S (set hoie), x : R(x0, x), x : |R(x0, x). (generalized assignment).
• S1; S2 (sequening).
• while B do S invariant J variant V end.The meaning of a generalized substitution S is de�ned in the weakest-preondition alulus [57, 58℄ by the prediate transformer λP ∈ BP.[S]Pwhere [S]P means that S establishes P . Intuitively, it means that every a-epted exeution of S starting from a state s satisfying [S]P terminates in astate satisfying P ; ertain substitutions an be feasibly exeuted (or aeptedfor exeution) by any physial omputational devie; it means also that Sterminates for every state of [S]P . The weakest-preondition operator hasproperties related to impliation over prediates: λP ∈ BP.[S]P is monotoniwith respet to the impliation, it is distributive with respet to the onjun-tion of prediates. The properties of the weakest-preondition operator areknown, sine the work of Dijkstra [57, 58℄ on the semantis de�ned by pred-iate transformers. The de�nition of λP ∈ BP.[S]P is indutively expressedover the syntax of B prediates and the syntax of generalized substitutions.
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[S]P an be redued to a B prediate, whih is used by the proof-obligationsgenerator. Figure 2 ontains the indutive de�nition of [S]P .Name Generalized substitution : S [S]PAssignment x := E P (E/x)Skip skip PParallel Composition x := E||y := F [x, y := E, F ]PNon-deterministi x :∈ S ∀v.(v ∈ S ⇒ P (v/x))Choie in a SetRelational Assignment x : R(x0, x) ∀v.(R(x0, v) ⇒ P (v/x))Unbounded Choie @x.S ∀x.[S]PBounded Choie hoie S1 or S2 end [S1]P ∧ [S2]P

(or equivalently S1[]S2)Guard selet G then T end G ⇒ [T ]P
(or equivalently G =⇒ S2)Preondition pre G then T end G ∧ [T ]P
(or equivalently G|T )Generalized Guard any t where G ∀ t· (G ⇒ [T ]P )then T endSequential S; T [S][T ]PComposition Fig. 2. De�nition of GSL and [S]PWe say that two substitutions S1 and S2 are equivalent, denoted S1 = S2,if for any prediate P of the B language, [S1]P ≡ [S2]P . The relation de�nes away to ompare substitutions. Abrial [2℄ proves a theorem for normalized formrelated to any substitution and it proves that a substitution is haraterizedby a preondition and a omputation relation over variables.Theorem 1. [2℄For any substitution S, there exists two prediates P and Q where x′ isnot free in P suh that: S = P |@x′.(Q =⇒ x := x′).The theorem tells us the importane of the preondition of a substitution,whih should be true, when the substitution is applied to the urrent state, elsethe resulting state is not onsistent with the transformation. Q is a relationbetween the initial state x and the next state x′. In fat, a substitution should



44 Dominique Cansell and Dominique Mérybe applied to a state satisfying the invariant and should preserve it. Intuitively,it means that, when one applies the substitution, one has to hek that theinitial state is orret. The weakest-preondition operator allows to de�nespei� onditions over substitutions:
• Aborted omputations: abt(S)

def
= for any prediate R,¬[S]R and it de-�nes the set of states that an not establish any prediate R and that arethe non-terminating states .

• Terminating omputations: trm(S)
def
= ¬abt(S) and it de�nes the termi-nation ondition for the substitution S.

• Miraulous omputations: mir(S)
def
= for any prediate R, [S]R and meansthat among states, some states may establish every prediate R, for in-stane FALSE, and they are alled miraulous states, sine they establisha mirale.

• Feasible omputations: �s(S)
def
= ¬mir(S) Miraulous states orrespondto non-feasible omputations and the feasibility ondition ensures that theomputation is realisti.Terminating omputations and feasible omputations play a entral rolein the analysis of generalized substitutions. The �gures 3 and 4 provide twolists of rules for simplifying trm(S) and �s(S) into the B prediates language;both lists are not omplete (see Abrial [2℄ for omplete lists).For instane, �s(selet FALSE then x := 0 end) is FALSE andmir(selet FALSE then x := 0 end) is TRUE.The substitution selet FALSE then x := 0 end establishes any prediateand is not feasible. We an not implement suh a substitution in a program-ming language.A relational prediate an be de�ned using the weakest-preondition se-mantis, namely prdx(S), by the expression ¬[S](x 6= x′) whih is the relationharaterizing the omputations of S. The �gure 5 ontains a list of de�nitionsof the prediate with respet to the syntax.The next property is proved by Abrial and shows the relationship betweenweakest-preondition and relational semantis. Prediates trm(S) and prdx(S)are respetively de�ned in �gure 3 and �gure 5.Theorem 2. [2℄For any substitution S, we have: S = trm(S)|@x′.(prdx(S) =⇒ x := x′)Both theorems emphasize the role of the preondition and the relation inthe semantial de�nition of a substitution. The re�nement of two substitu-tions is simply de�ned using the weakest-preondition alulus as follows: S isre�ned by T (written S ⊑ T ), if for any prediate P , [S]P ⇒ [T ]P . We angive an equivalent version of the re�nement that shows that it dereases thenon-determinism. Let us de�ne the following sets: pre(S) = {x|x ∈ s∧trm(S)},



The event-B Modelling Method 45Generalized substitution : S trm(S)
x := E TRUE

skip TRUE

x :∈ S TRUE

x : R(x0, x) TRUE

@x.S ∀x.trm(S)hoie S1 or S2 end trm(S1) ∧ trm(S2)
(or equivalently S1[]S2)selet G then T end G ⇒ trm(T )
(or equivalently G =⇒ S2)pre G then T end G ∧ trm(T )
(or equivalently G|T )any t where G then T end ∀ t· ( G ⇒ trm(T ) )Fig. 3. Examples of de�nitions for trm(S)rel(S) = {x, x′|x ∈ s ∧ x′ ∈ s ∧ prdx(S)} and dom(S) = {x|x ∈ s ∧ �s(S)},where s is supposed to be the global set of states.The re�nement an be de�ned equivalently using the set-theoretial ver-sions: S is re�ned by T , if, and only if, pre(S) ⊆ pre(T ) and rel(T ) ⊆ rel(S). Wean also use previous notations and de�ne equivalently the re�nement of twosubstitutions by the expression: trm(S) ⇒ trm(T ) and prdx(T ) ⇒ prdx(S).The prediate prdx(S) relates S to a relation over x and x′; it means that asubstitution an be seen like a relation over pairs of states.The weakest-preondition semantis over generalized substitutions pro-vides the semantial foundation of the generator of proof obligations; in thenext sub-subsetions we introdue operations and events, whih are two waysto use the B method.



46 Dominique Cansell and Dominique MéryGeneralized substitution : S �s(S)
x := E TRUE

skip TRUE

x :∈ S S 6= ∅

x : R(x0, x) ∃v.(R(x0, v)

@x.S ∃x.�s(S)hoie S1 or S2 end �s(S1) ∨ �s(S2)
(or equivalently S1[]S2)selet G then T end G ∧ �s(T )
(or equivalently G =⇒ S2)pre G then T end G ⇒ �s(T )
(or equivalently G|T )any t where G then T end ∃ t· ( G ∧ �s(T ) )Fig. 4. Examples of de�nitions for �s(S)Operations and EventsGeneralized substitutions are used to onstrut operations of abstrat ma-hines or events of abstrat models . Both notions will be detailed in the nextsubsetion. However, we should explain the di�erene between those two no-tions. A (abstrat) mahine is a struture with a part de�ning data (SETS,CONSTANTS, PROPERTIES), a part de�ning state (VARIABLES,INVARIANT)and a part de�ning operations (OPERATIONS, INITIALISATION); it only givesits potential user the ability to ativate the operations, not to aess its statediretly and this aspet is very important for re�ning the mahine by makinghanges of variables and of operations, while keeping their names. An opera-tion has a preondition and the preondition should be true, when one allsthe operation. Operations are haraterized by generalized substitutions and



The event-B Modelling Method 47Generalized substitution : S prd
x
(S)

x := E x′ = E

skip x′ = x

x :∈ S x′ ∈ S

x : R(x0, x) R(x, x′)

@z.S ∃z.prd
x
(S) if z 6= x′hoie S1 or S2 end prd

x
(S1) ∨ prd

x
(S2)

(or equivalently S1[]S2)selet G then T end G ∧ prd
x
(T )

(or equivalently G =⇒ S2)pre G then T end G ⇒ prd
x
(T )

(or equivalently G|T )any t where G then T end ∃ t· (G ∧ prd
x
(T ) )Fig. 5. Examples of de�nitions for prd

x
(S)their semantis is based on the semantis of generalized substitutions (eitherin the weakest-preondition-based style, or in the relational style). It meansthat the ondition of preservation of the invariant (or proof obligation) issimply written as follows:

I ∧ trm(O) ⇒ [O]I (1)If one alls the operation, when the preondition is false, any state anbe reahed and the invariant is not ensured. The style of programming isalled generous but it assumes that an operation is always alled when thepreondition is true. An operation an have input and output parameters andit is alled in a state satisfying the invariant and it is a passive objet, sineit requires to be alled to have an e�et.



48 Dominique Cansell and Dominique MéryOn the other hand, an event has a guard and is triggered in a state vali-dating the guard. Both operation and event have a name, but an event has noinput and output parameters. An event is observed or not observed. and pos-sible hanges of variables should maintain the invariant of the urrent model:the style is alled defensive. Like an operation, an event is haraterized bya generalized substitution and it an be de�ned by a relation over variablesand primed variables: a before-after prediate denoted BA(e)(x, x′). An eventis essentially a reative objet and reats with respet to its guard grd(e)(x).However, there is a restrition over the language GSL used for de�ning eventsand we authorize only three kinds of generalized substitutions (see the �g-ure 6). In the de�nition of an event, three basi substitutions are used towrite an event (x := E(x), x : ∈ S(x), x : P (x0, x)) and the last substitutionis the normal form of the three ones. An event should be feasible and thefeasibility is related to the feasibility of the generalized substitution of theevent: some next state must be reahable from a given state. Sine events arereative objets, related proof obligations should guarantee that the urrentstate satisfying the invariant should be feasible. The �gure 7 ontains the def-inition of guards of events. We leave the lassial abstrat mahines of the Blassial approah and we illustrate the system modelling through events andmodels.When using the relational style for de�ning the semantis of events, we usethe style advoated by Lamport [73℄ in TLA; an event is seen as a transforma-tion between states before the transformation and states after the transfor-mation. Lamport uses the priming of variables to separate before values fromafter values. Using this notation and supposing that x0 denotes the valueof x before the transition of the event, events an get a semantis de�nedover primed and unprimed variables in �gure 6. The before-after prediate isalready de�ned in the B book as the prediate prdx(S) de�ned for every sub-stitution S (see sub-subsetion 2.2). S. Merz [85℄ introdues the TLA/TLA+modelling language in this volume.Any event e has a guard de�ning the enabledness ondition over the ur-rent state and it expresses the existene of a next state. For instane, thedisjuntion of all guards is used for strengthening the invariant of a B sys-tem of events to inlude the deadlok freedom of the urrent model. Beforeto introdue B models, we give the expression stating the preservation of aproperty (or proof obligation) by a given event e:
I(x) ⇒ [e] I(x) (2)or equivalently in a relational style

I(x) ∧ BA(e)(x, x′) ⇒ I(x′) (3)
BA(e)(x, x′) is the before-after relation of the event e and I(x) is a stateprediate over variables x. The equation 1 states the proof obligation of the



The event-B Modelling Method 49Event : E Before-After Prediatebegin x : P (x0, x) end P (x, x′)when G(x) then x : P (x0, x) end G(x) ∧ P (x, x′)any t where G(t, x) ∃ t· ( G(t, x) ∧ P (x, x′, t) )then x : P (x0, x, t) endFig. 6. De�nition of events and before-after prediates of eventsEvent : E Guard: grd(E)begin S end TRUEwhen G(x) then T end G(x)any t where G(t, x) then T end ∃ t· G(t, x)Fig. 7. De�nition of events and guards of eventsoperation O using the weakest-preondition operator and the equation 3 de-�nes the proof obligation for the preservation of I(x), while e is observed.Sine the two approahes are semantially equivalent, the proof-obligationsgenerator of the Atelier B an be reused for generating those assertions in theB environment.The SELECT event is the previous notation for the WHEN event; bothare equivalent; however, the WHEN notation aptures the idea of reativ-ity of guarded events; B♯ [5, 69℄ will provide other notations for ombin-ing events. The event-B notation is enrihed by the following notation:begin x : | P (x0, x) end whih means that the value of the variable x is setto any value suh that P (x0, x) where x0 is the value of x before the event. Inthe next subsetion, we detail abstrat mahines and abstrat models, whihare using operations and events.



50 Dominique Cansell and Dominique Méry3 B Models3.1 Modelling SystemsSystems under onsideration are software systems, ontrol systems, protools,sequential and distributed algorithms, operating systems, iruits; they aregenerally very omplex and have parts interating with an environment. Adisrete abstration of suh systems onstitutes an adequate framework: suhan abstration is alled a disrete model. A disrete model is more generallyknown as a disrete transition system and provides a view of the urrent sys-tem; the development of a model in B follows an inremental proess validatedby the re�nement. A system is modelled by a sequene of models related bythe re�nement and managed in a projet.A projet [2, 4℄ in B ontains information for editing, proving, analysing,mapping and exporting models or omponents. A B omponent has twoseparate forms: a �rst form onerns the development of software models and Bomponents are abstrat mahine, re�nement, implementation; a seond formis related to modelling reative systems using the event-based B approah andB omponents are simply alled models. Eah form orresponds to a spei�approah for developing B omponents; the �rst form is fully supported bythe B tools [52, 80℄ and the seond one is partly supported by tools [52℄. In thenext sub-subsetions, we overview eah approah based on the same logialand mathematial onepts.Modelling Systems in the B Classial ApproahThe B method [2℄ is historially applied to software systems and has helpedin developing safe software ontrolling trains [22℄. The sope of the methodis not restrited to the spei�ation step but inludes failities for designinglarger models or mahines gathered in a projet. The basi model is alledan abstrat mahine and is de�ned in the A(bstrat) M(ahine) N(otation)language. We desribe an abstrat mahine in the next �gure. An abstratmahine enapsulates variables de�ning the state of the system; the stateshould onform to the invariant and eah operation should be alled, whenthe urrent state satis�es the invariant. Eah operation should preserve theinvariant, when it is alled.An operation may have input/output parameters and only operations anhange state variables. An abstrat mahine looks like a desk alulator andeah time a user presses the button of an operation, he should hek thatthe preondition of the operation is true, else no preservation of invariant anbe ensured (for instane, division by zero). Struturing mehanisms will bereviewed in the sub-subsetion 3.1. An abstrat mahine has a name m; thelause SETS ontains de�nitions of sets; the lause onstants allows one tointrodue information related to the mathematial struture of the problem



The event-B Modelling Method 51to solve and the lause PROPERTIES ontains the e�etive de�nitions of on-stants: it is very important to list arefully properties of onstants in a waythat an be easily used by the tool. We do not mention struturing meha-nisms like sees, inludes, extends, promotes, uses, imports but they an helpin the management of proof obligations.MACHINE
mSETS
sCONSTANTS
cPROPERTIES
P (s, c)VARIABLES
xINVARIANT
I(x)ASSERTIONS
A(x)INITIALISATION
<substitution>OPERATIONS
<list of operations>END

The seond part of the abstrat mahinede�nes dynami aspets of state variablesand properties over variables using the gen-erally alled indutive invariant and us-ing assertions generally alled safety prop-erties . The invariant I(x) types the vari-able x, whih is assumed to be initializedwith respet to the initial onditions andwhih is supposed to be preserved by op-erations (or transitions) of the list of op-erations. Conditions of veri�ation alledproof obligations are generated from thetext of the model using the �rst part forde�ning the mathematial theory and theseond part is used to generate proof obli-gations for the preservation (when allingthe operation) of the invariant and proofobligations stating the orretness of safetyproperties with respet to the invariant.The �gure 8 ontains an example of an ab-strat mahine with only one operation set-ting the variable result to the value of the
factorial(m), with m a onstant.Modelling Systems in the Event-based B ApproahAbstrat mahines are based on lassial mehanisms like the all of opera-tion or the input/output mehanisms. On the other hand, reative systemsreats to the environment with respet to external stimuli; abstrat modelsof the event-based B approah intend to integrate the reativity to stimuli bypromoting events rather than operations. Contrary to operations, events haveno parameters and there is no aess to state variables. At most one event isobserved at any time of the system.A (abstrat) model is made up of a part de�ning mathematial struturesrelated to the problem to solve and a part ontaining elements on state vari-ables, transitions and (safety and invariane) properties of the model. Proofobligations are generated from the model to ensure that properties are ef-fetively holding: it is alled internal onsisteny of the model. A model isassumed to be losed and it means that every possible hange over state vari-ables is de�ned by transitions; transitions orrespond to events observed by



52 Dominique Cansell and Dominique MéryMACHINE
FACTORIAL_MACCONSTANTS
factorial, mCONSTANTS
factorialPROPERTIES
m ∈ N ∧
factorial ∈ N ↔ N ∧

∀f ·

0

B

B

B

B

@

f ∈ N ↔ N ∧
0 7→ 1 ∈ f ∧
∀(n, fn).(n 7→ fn ∈ f ⇒ n + 1 7→ (n + 1) × fn ∈ f)

⇒
factorial ⊆ f

1

C

C

C

C

AVARIABLES
resultINVARIANT
result ∈ NASSERTIONS
factorial ∈ N −→ N ;
factorial(0) = 1 ;
∀n.(n ∈ N ⇒ factorial(n + 1) = (n + 1) × factorial(n))INITIALISATION
result :∈ NOPERATIONS
computation = begin result := factorial(m) endENDFig. 8. An example of an abstrat mahine for the fatorial omputationthe spei�er. A model m is de�ned by the following struture. A model has aname m; the lause SETS ontains de�nitions of sets of the problem; the lauseCONSTANTS allows one to introdue information related to the mathematialstruture of the problem to solve and the lause PROPERTIES ontains the ef-fetive de�nitions of onstants: it is very important to list arefully propertiesof onstants in a way that an be easily used by the tool. Another point is thefat that sets and onstants an be onsidered like parameters and extensionsof the B method exploit this aspet to introdue parametrization tehniquesin the development proess of B models. The seond part of the model de-�nes dynami aspets of state variables and properties over variables usingthe invariant alled generally indutive invariant and using assertions alledgenerally safety properties. The invariant I(x) types the variable x, whih isassumed to be initialized with respet to the initial onditions and whih ispreserved by events (or transitions) of the list of events.



The event-B Modelling Method 53Conditions of veri�ation alled proof obligations are generated from thetext of the model using the �rst part for de�ning the mathematial theory andthe seond part is used to generate proof obligations for the preservation ofthe invariant and proof obligations stating the orretness of safety propertieswith respet to the invariant. The prediate A(x) states properties derivablefrom the model invariant. A model states that state variables are always in agiven set of possible values de�ned by the invariant and it ontains the onlypossible transitions operating over state variables.A model is not a program and no ontrol �ow is related to it; however,it requires a validation but we �rst de�ne the mathematis for stating sets,properties over sets, invariants, safety properties. Conditions of onsistenyof the model are alled proof obligations and they express the preservation ofinvariant properties and avoidane of deadlok.MODEL
mSETS
sCONSTANTS
cPROPERTIES
P (s, c)VARIABLES
xINVARIANT
I(x)ASSERTIONS
A(x)INITIALISATION
<substitution>EVENTS
<list of events>END

Proof obligation(INV1) Init(x) ⇒ I(x)(INV2) I(x) ∧ BA(e)(x, x′) ⇒ I(x′)(DEAD) I(x) ⇒ (grd(e1) ∨ . . . grd(en))

e1, . . . , en is the list of events of the model
m. (INV1) states the initial ondition whihshould establish the invariant. (INV2) shouldbe heked for every event e of the model,where BA(e)(x, x′) is the before-after predi-ate of e. (DEAD) is the ondition of deadlok-freedom: at least one event is enabled.Finally, prediates in the lause ASSERTIONS should be implied by theprediates of the lause INVARIANT; the ondition is simply formalized asfollows:

P (s, c) ∧ I(x) ⇒ A(x)Finally, the substitution of an event must be feasible; an event is feasiblewith respet to its guard and the invariant I(x), if there is always a possibletransition of this event or equivalently, there exists a next value x′ satisfyingthe before-after prediate of the event. The feasibility of the initialisationevent requires that at least one value exists for the prediate de�ning the



54 Dominique Cansell and Dominique Méryinitial onditions. The feasibility of an event leads to a readability of the formof the event; the reognition of the guard in the text of the event simpli�esthe semantial reading of the event and it simpli�es the translation proessof the tool: no guard is hidden inside the event. We summarize the feasibilityonditions in the next table.Event : E Feasibility : fis(E)

x : Init(x) ∃x · Init(x)begin x : P (x0, x) end I(x) ⇒ ∃x′ · P (x, x′)when G(x)then x : P (x0, x) end I(x) ∧ G(x) ⇒ ∃x′ · P (x, x′)any l where G(l, x)then x : P (x0, x, l) end I(x) ∧ G(l, x) ⇒ ∃x′ · P (x, x′, l)Proof obligations for a model are generated by the proof-obligations gen-erator of the B environment; the sequent alulus is used to state the validityof the proof obligations in the urrent mathematial environment de�ned byonstants, properties. Several proof tehniques are available but the prooftool is not able to prove automatially every proof obligation and intera-tions with the prover should lead to prove every generated proof obligation.We say that the model is internally onsistent when every proof obligation isproved. A model uses only three kinds of events, while the generalized sub-stitutions are riher; but the objetives are to provide a simple and powerfulframework for modelling reative systems. Sine the onsisteny of a modelis de�ned, we should introdue the re�nement of models using the re�ne-ment of events de�ned like the substitution re�nement. We reonsider theexample of the factorial funtion and its omputation and we propose themodel of the �gure 9. As you notie, the abstrat mahine fac and the ab-strat model fac are very lose and the main di�erene is in the use of eventsrather than operations: the event computation eventually appears or is exe-uted, beause of the properties of the mathematial funtion alled factorial.The operation computation of the mahine in the �gure 8 is passive, but theevent computation of the model in the �gure 9 is reative, when it is possible.Moreover, events may hide other ones and the re�nement of models will play aentral role in the development proess. We present in the next sub-subsetionlassial mehanisms for struturing developed omponents of spei�ation.



The event-B Modelling Method 55MODEL
FACTORIAL_EV ENTSCONSTANTS
factorial, mCONSTANTS
factorialPROPERTIES
m ∈ N ∧
factorial ∈ N ↔ N ∧
0 7→ 1 ∈ factorial ∧
∀(n, fn).(n 7→ fn ∈ factorial ⇒ n + 1 7→ (n + 1) × fn ∈ factorial) ∧

∀f ·

0

B

B

B

B

@

f ∈ N ↔ N ∧
0 7→ 1 ∈ f ∧
∀(n, fn).(n 7→ fn ∈ f ⇒ n + 1 7→ (n + 1) × fn ∈ f)

⇒
factorial ⊆ f

1

C

C

C

C

AVARIABLES
resultINVARIANT
result ∈ NASSERTIONS
factorial ∈ N −→ N ;
factorial(0) = 1 ;
∀n.(n ∈ N ⇒ factorial(n + 1) = (n + 1) × factorial(n))INITIALISATION
result :∈ NEVENTS
computation = begin result := factorial(m) endENDFig. 9. An example of an abstrat model for the fatorial omputationStruturing Mehanisms of the B MethodIn the last two sub-subsetions, we have introdued B models following thelassi�ation into two main ategories abstrat mahines and models ; both arealled omponents but they are not dealing with the same approah. We detailstruturing mehanisms of both approahes to be omplete on referenes ofwork on B.Sharing B ComponentsThe AMN notation provides lauses related to struturing mehanisms in om-ponents like abstrat mahines but also like re�nements or implementations.The B development proess starts from basi omponents mainly abstratmahines and is layered development; the goal is to obtain implementation



56 Dominique Cansell and Dominique Méryomponents through struturing mehanisms like INCLUDES, SEES, USES,EXTENDS, PROMOTES, IMPORTS, REFINES. The lauses INCLUDES, SEES,USES, EXTENDS, PROMOTES, IMPORTS, REFINES allow one to ompose Bomponents in the lassial B approah and every lause leads to spei�onditions for use. Several authors [30, 93℄ analyse the limits of existing Bprimitives to share data, while re�ning and omposing B omponents; it islear that the B primitives for struturing B omponents an be used follow-ing strong onditions on the sharing of data and operations. The limits aremainly due to the reuse of already proved B omponents; reuse of variables,invariants, onstants, properties, operations. In fat, the problem to solve isthe management of interferenes among omponents and the seminal solu-tion of Owiki and Gries [91℄ faes the ombinatorial explosion of the numberof proof obligations. The problem is to ompose omponents aording togiven onstraints of orretness. The new event-based B approah onsidersa di�erent way to ope with struturing mehanisms and onsiders only twoprimitives: the REFINES primitive and the DECOMPOSITION primitive.B Classial Primitives for Combining ComponentsWe fous on the meaning and the use of �ve primitives for sharing data andoperations among B omponents, namely INCLUDES,SEES, USES, EXTENDS,PROMOTES. Eah primitive is related to a lause of the AMN notation andallows aess to data or operations of already developed omponents; spei�proof obligations state onditions to ensure a sound omposition. A strutur-ing primitive makes aessed omponents visible under various degrees fromthe aessing omponent.The INCLUDES primitive an be used in an abstrat mahine or in a re-�nement; the inluded omponent allows the inluding omponent to modifyinluded variables by inluded operations; the inluded invariant is preservedby the inluding omponent and is really used by the tool for deriving proofsof proof obligations of the inluding omponent. The inluding omponentan not modify inluded variables but it an use them in read aess. No in-terferene is possible under those onstraints. The USES primitives an onlyappear in abstrat mahines and using mahines have a read-only aess tothe used mahine, whih an be shared by other mahines. Using mahinesan refer to shared variables in their invariants and data of the used mahineare shared among using mahines. When a mahine uses another mahine,the urrent projet must ontain another mahine inluding the using and theused mahines. The re�nement is related to the inluding mahine and theusing mahine an not be re�ned. The SEES primitive refers to an abstratmahine imported in another branh of the tree struture of the projet andsets, onstants and variables an be onsulted without hange. Several ma-hines an see the same mahine. Finally, the EXTENDS primitive an onlybe applied to abstrat mahines and only one mahine an extend a givenmahine; the EXTENDS primitive is equivalent to the INCLUDES primitive



The event-B Modelling Method 57followed by the PROMOTES primitive for every operation of the inluded ma-hine. For instane, we an illustrate the implementation and we an showthat the implementation of the �gure 10 implements (re�nes) the mahineof the �gure 8. The operation computation is re�ned or implemented by awhile statement; proof obligations should take into aount the terminationof the operation in the implementation: the variant establishes the termina-tion. Spei� proof obligations are produed to hek the absene of over�owof variables. IMPLEMENTATION
FACTORIAL_IMPREFINES
FACTORIAL_MACVALUES
m = 5CONCRETE_VARIABLES
result, xINVARIANT
x ∈ 0..n ∧
result = factorial(x)ASSERTIONS
factorial(5) = 120 ∧
result ≤ 120INITIALISATION
result := 1; x := 0OPERATIONS
computation =while x < m do

x := x + 1; fn := x × fninvariant
x ∈ 0..m
result = factorial(x)
result ≤ factorial(m)variant
m − xendENDFig. 10. An example of an implementation for the fatorial omputationOrganizing Components in a ProjetThe B development proess is based on a struture de�ned by a olletion ofomponents whih are either abstrat mahines, re�nements or implementa-tions. An implementation orresponds to a stage of development leading to



58 Dominique Cansell and Dominique Mérythe prodution of odes when the language of substitutions is restrited tothe B0 language. The B0 language is a subset of the language of substitutionsand translation to C, C++ or ADA is possible in tools. The links betweenomponents are de�ned by the B primitives previously mentioned and by there�nement.When building a software system, the development starts from a doumentwhih may be written in a semi-formal spei�ation language; the systemis deomposed into subsystems and a model is progressively built using Bprimitives for omposing B omponents. We emphasize the role of struturingprimitives, sine they allow to distribute the global proof omplexity. TheB development proess overs the lassial life yle: requirements analysis,spei�ation development, (formal) design and validation through the proofproess and animation. K. Lano [75℄ illustrates an objet-oriented approah ofthe B development and it identi�es the layered development paradigm that wehave already mentioned through B primitives. Finally, implementations are Bomponents that are lose to real ode; in an implementation omponent, anoperation an be re�ned by a while loop and the heking should prove thatthe while loop is terminating.Strutures for the Event-based B ApproahWhile the B lassial approah is based on the B omponents and B stru-turing primitives, the event-based B approah promotes two onepts: the re-�nement of models and the deomposition of models [4℄. As we have alreadymentioned, the lassial B primitives have limits in the sope of their use; weneed mainly to manage sharing data but without generating too many proofobligations. So the main idea of Abrial is not to ompose, but to deompose a�rst model and to re�ne models obtained after deomposition step. The newproposed approah simpli�es the B method and fouses on the re�nement. Itmeans that previous development in the B lassial approah an be replayedin the event-based B one. Moreover, the foundations of B remain useful andusable in the urrent environment of the Atelier B. In the next subsetion, wedesribe the mathematial foundations of B and we illustrate B onepts inthe event-based B approah.Summary on Struturing Struturing MehanismsWe have reviewed struturing mehanisms of the lassial B approah andthe new ones proposed for the event-based B approah. While the lassi-al approah provides several mehanisms for struturing mahines, only twomehanisms supports the event-based approah. In fat, the ruial point isto ompose abstrat models or abstrat mahines; the limit of omposition isrelated upon the prodution of a too high number of proof obligations. Thespei�er wants to share state variables in read and write mode; the struturingmehanisms of lassial B do not allow the sharing of variable, but in readmode. Our work on the feature interation problem [39℄ illustrates the use of



The event-B Modelling Method 59re�nement for omposing features and other approahes based on the dete-tion of interation by using a model heker on �nite models, do not ope theglobal problem beause of �nite models. Finally, we think that the hoie ofevents with the re�nement provides a simple way to integrate proof into thedevelopment of omplex systems and onforms to the view of systems throughdi�erent abstrations, thanks to the stuttering [73℄. We have not mentionnedthe lause DEFINITIONS whih providesg a way to introdue new de�nitionsin a model and whih is a maro-expansion mehanism.3.2 Proof-based Development in BRe�nement of B ModelsThe re�nement of a formal model allows one to enrih a model in a step by stepapproah. Re�nement provides a way to onstrut stronger invariants and alsoto add details in a model. It is also used to transform an abstrat model in amore onrete version by modifying the state desription. This is essentiallydone by extending the list of state variables (possibly suppressing some ofthem), by re�ning eah abstrat event into a orresponding onrete version,and by adding new events. The abstrat state variables, x, and the onreteones, y, are linked together by means of a, so-alled, gluing invariant J(x, y).A number of proof obligations ensure that (1) eah abstrat event is orretlyre�ned by its orresponding onrete version, (2) eah new event re�nes skip,(3) no new event take ontrol for ever, and (4) relative deadlokfreeness ispreserved. We detail proof obligations of a re�nement, while introduing thesyntax of a re�nement in the �gure 11.A re�nement has a name r; it is a model re�ning a model m in the lauseREFINES and m an be a re�nement. New sets, new onstants and new prop-erties an be delared in the lauses SETS, CONSTANTS or PROPERTIES.New variables y are delared in the lause variables and are the onretevariables; variables x of the re�ned model m are alled the abstrat variables.The gluing invariant de�nes a mapping between abstrat variables and on-rete ones; when a onrete event ours, there must be a orresponding onein the abstrat model: the onrete model simulates the abstrat model. Thelause VARIANT ontrols new events, whih an not take the ontrol overothers events of the system. In a re�nement, new events may appear and arere�ning an event skip; events of the re�ned model an be strengthened andone should prove that the new model does not ontain more deadlok on�g-urations than the re�ned one: if a guard is strengthened too muh, it an leadto a dead re�ned event.The re�nement r of a model m is a system; its trae semantis is based ontraes of states over variables x and y and the projetion of onrete traeson abstrat traes is a stuttering-free traes semantis of the abstrat model.The mapping between abstrat and onrete traes is alled a re�nementmapping by Lamport [73℄ and the stuttering is the key onept for re�ning



60 Dominique Cansell and Dominique MéryREFINEMENT
rREFINES
mSETS
tCONSTANTS
dPROPERTIES
Q(t, d)VARIABLES
yINVARIANT
J(x, y)VARIANT
V (y)ASSERTIONS
B(y)INITIALISATION
y : INIT (y)EVENTS
<list of events>ENDFig. 11. Syntax of a re�nement modelevents systems. When an event e of m is triggered, it modi�es variables y andthe abstrat event re�ning e modi�es x. Proof obligations make preise therelationship between abstrat model and onrete model.The abstrat system is m and the onrete system is r; INIT (y) denotesthe initial ondition of the onrete model; I(x) is the invariant of the re�nedmodel m; BAC(y, y′) is the onrete before-after relation of an event of theonrete system r and BAA(x, x′) is the abstrat before-after relation of theevent of the abstrat system m; G1(x), . . .Gn(x) are the guards of the nabstrat events of m; H1(y), . . . , Hk(y) are the guards of k onrete events of

r. Formally, the re�nement of a model is de�ned as follows:
• (REF1) INIT (y) ⇒ ∃x.(Init(x) ∧ J(x, y)) :The initial ondition of the re�nement model imply that there exists anabstrat value in the abstrat model suh that that value satis�es theinitial onditions of the abstrat one and implies the new invariant of there�nement model.
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• (REF2) I(x) ∧ J(x, y) ∧ BAC(y, y′) ⇒ ∃x′.(BAA(x, x′) ∧ J(x′, y′)) :The invariant in the re�nement model is preserved by the re�ned eventand the ativation of the re�ned event triggers the orresponding abstratevent.
• (REF3) I(x) ∧ J(x, y) ∧ BAC(y, y′) ⇒ J(x, y′) :The invariant in the re�nement model is preserved by the re�ned eventbut the event of the re�nement model is a new event whih was not visiblein the abstrat model; the new event re�nes skip.
• (REF4) I(x) ∧ J(x, y) ∧ (G1(x) ∨ . . . ∨ Gn(x)) ⇒ H1(y) ∨ . . . ∨ Hk(y) :The guards of events in the re�nement model are strengthened and we haveto prove that the re�nement model is not more bloked than the abstrat.
• (REF5) I(x) ∧ J(x, y)) ⇒ V (y) ∈ N and
• (REF6) I(x) ∧ J(x, y) ∧ BAC(y, y′) ⇒ V (y′) < V (y) :New events should not blok forever abstrat ones.The re�nement of models by re�ning events is lose to the re�nementof ation systems [17℄, the re�nement of UNITY and the TLA re�nement,even if there is no expliit semantis based on traes but one an onsiderthe re�nement of events like a relation between abstrat traes and onretetraes. The stuttering plays a entral role in the global proess of developmentwhere new events an be added into the re�nement model. When one re�nesa model, one an either re�ne an existing event by strengthening the guardor/and the before-after prediate (removing non-determinism), or add a newevent whih is supposed to re�ne the skip event. When one re�nes a modelby another one, it means that the set of traes of the re�ned model ontainsthe traes of the resulting model with respet to the stuttering relationship.Models and re�ned models are de�ned and an be validated through the proofsof proof obligations; the re�nement supports the proof-based development andwe illustrate it by a ase study on the development of a program for omputingthe factorial funtion.Proof-based Development in AtionThe B language of prediates, the B language of events, the B language ofmodels and the B re�nement onstitute the B method; however, the objetivesof the B method are to provide a framework for developing models and �nally



62 Dominique Cansell and Dominique Méryprograms. The development is based on proofs and should be validated bya tool. The urrent version of Atelier B groups B models into projets; aprojet is a set of B models related to a given problem. The statement ofthe problem is expressed in a mathematial framework de�ned by onstants,properties, strutures and the development of a problem starts from a veryhigh level model whih is simply stating the problem in an event-based style.The proof tool is entral in the B method, sine it allows us to write modelsand to validate step-by-step eah deision of development; it is an assistantused by the user to integrate deisions into the models, espeially by re�ningthem. The proof proess is fundamental and the interation of a user in theproof proess is a very ritial point. We examine the di�erent aspets ofthe development by an example. The problem is to ompute the value ofthe factorial funtion for a given data n. We have already proved that the(mathematial) factorial funtion exists and we an reuse its de�nition andits properties. Three suessive models are provided by development, namely
Fac1 (the initial model stating in one-shot the omputation of factorial(n)),
Fac2 (re�nement of the model Fac1 omputing step by step factorial(n)),
Fac3 (ompleting the development of an algorithm for factorial(n)).We begin by writing a �rst model whih is re-phrasing the problem andwe simply state that an event is alulating the value factorial(n) where n isa natural number. The model has only one event and is the one-shot model:omputation =begin fn := factorial(n) end

fn is the variable ontaining the value omputed by the program; theexpression one-shot means that we show a solution just by assigning the valueof mathematial funtion to fn. It is lear that the one-shot event is notsatisfatory, sine it does not desribe the algorithmi proess for omputingthe result. Proofs are not di�ult, sine they are based on the propertiesstated in the preliminary part. Our next model will be a re�nement of Fa1. Itwill introdue an iterative proess of omputation based on the mathematialde�nition of factorial. We therefore add a new event prog whih is extendingthe partial funtion under onstrution alled fac that ontains a partialde�nition of the factorial funtion.progress =when n /∈ dom(fac) thenany x where
x ∈ N ∧ x ∈ dom(fac) ∧ x + 1 ∈ dom(fac)then
fac(x + 1) := (x + 1) ∗ fac(x)endend



The event-B Modelling Method 63The initialisation is simply to set fac to the value for 0: fac := {0 7→ 1}and there is a new event progress whih simulates the progress by adding thenext pair in the funtion fa. Seondly, the event omputation is re�ned by thefollowing event stating that the proess stops when the fac variable is de�nedfor n. omputation =when n ∈ dom(fac) then
fn := fac(n)endThe omputation is based on the alulation of the �xed-point of the equa-tion de�ning fatorial and the ordering is the set inlusion over domains offuntions; fa is a variable satisfying the following invariant property:

fac ∈ N 7→ N ∧ fac ⊆ factorial ∧
dom(fac) ⊆ 0..n ∧ dom(fac) 6= ∅

fac is a relation over natural numbers and it ontains a partial de�nitionof the factorial funtion; as long as n is not de�ned for fac, the omputingproess adds a new pair in fac. The system is deadlok-free, sine the dis-juntion of the guards n ∈ dom(fac), or n /∈ dom(fac) is trivially true. Theevent progress inreases the domain of fa: dom(fac) ⊆ 0..n. Proof obligationsfor the re�nement are e�etively proved by the proof tool:
n ∈ dom(fac) ∨
( n /∈ dom(fac) ∧
∃x.(x ∈ N ∧ x ∈ dom(fac) ∧ x + 1 /∈ dom(fac)))The model is more algorithmi than the �rst model and it an be re�nedinto a third model alled Fa3 loser to the lassial algorithmi solution. Twonew variables are introdued: a variable i plays the role of index and a variablefq is an aumulator. A gluing invariant de�ne relations between old and newvariables:

i ∈ N ∧ 0..i = dom(fac) ∧ fq = fac(i)The two events of the seond model are re�ned into the two next events.omputation =when i = n then
fn := fqend progress =when i 6= n then

i := i + 1‖fq := (i + 1) ∗ fqend



64 Dominique Cansell and Dominique MéryProof obligations are ompletely disharged with the proof tool and wederive easily the algorithm by analysing guards of the last model.begin
i := 0‖fq := 1while i 6= n do

i := i + 1‖fq := (i + 1) ∗ fqend ;endWe an simplify the algorithm by removing the parallel operator and wetransform it as follows: begin
i := 0;
fq := 1;while i 6= n do

i := i + 1;
fq := i ∗ fq;end ;endCase studies provide information over the development proess; di�erentdomains have been onsidered for illustrating the event-based B approah:sequential programs [13, 43℄, distributed systems [10, 12, 38, 42℄, iruits [84,95℄, information systems [46℄. In the next setions, we illustrate the event Bmodelling method by ase studies:

• Sequential algorithms
• Combining oordination and re�nement for sorting
• Spanning trees algorithms
• A distributed leader eletion algorithm4 Sequential Algorithms4.1 Primitive Reursive FuntionsThe Class of Primitive Reursive FuntionsIn the omputability theory [98℄, the primitive reursive funtions ontitutea strit sub-lass of general reursive funtions also alled the lass or om-putable funtions. Many omputable funtions are primitive reursive as theaddition, the multipliation, the exponentiation, the sign, . . . ; in fat, a prim-itive funtion orresponds to a bounded (for) loop and we show how to derivethe (for) algorithm from the de�nition of the primitive reursive funtion.



The event-B Modelling Method 65The primitive reursive funtions are de�ned by initial funtions (the 0-plae zero funtion ζ, the k-plae projetion funtion πi
k, the suessor fun-tion σ) and by two ombining rules, namely the omposition rule and theprimitive reursive rule. More preisely, we give the de�nition of funtionsand rules:

• ζ() = 0
• ∀i ∈ {1, . . . , k} : ∀x1, . . . , xk ∈ N : πi

k(x1, . . . , xk) = xi

• ∀x ∈ N : σ(n) = n + 1
• If g is a l-plae funtion, if h1, . . . , hl are n-plae funtions and if thefuntion f is de�ned by:

∀x1, . . . , xn ∈ N : f(x1, . . . , xn) = g(h1(x1, . . . , xn), . . . , hl(xl, . . . , xn)),then f is obtained from g and h1, . . . , hl by omposition.
• If g is a l-plae funtion, if h is a (l + 2)-plae funtion and if the funtion

f is de�ned by: ∀x1, . . . , xl, x ∈ N,
{

f(x1, . . . , xl, 0) = g(x1, . . . , xl)
f(x1, . . . , xl, x + 1) = h(x1, . . . , xl, x, f(x1, . . . , xl, x))

,then f is obtained from g and h by primitive reursion.A funtion f is primitive reursive, if it is an initial funtion or an be gen-erated from initial funtions by some �nite sequene of the operations of om-position and primitive reursion. A primitive reursive funtion is omputedby an iteration and we de�ne a general framework for stating the developmentof funtions de�ned by primitive reursion using prediate diagrams.Modelling the Computation of a Primitive Reursive FuntionThe �rst step is to de�ne the mathematial funtion to ompute the value of
f(u, v) where u and v are two natural numbers; the primitive reursive ruleis stated as follows:
• u, v, g, h, f are onstants orresponding to values and funtions.CONSTANTS

u, v, g, h, f

• u, v, g, h are supposed to be given.
• g, h are total and two primitive re-ursive funtions.
• f is de�ned by a �xed-point-basedrule.PROPERTIES

u ∈ N ∧ v ∈ N ∧
g ∈ N −→ N ∧ h ∈ N × N × N −→ N ∧
f ∈ N × N −→ N ∧
∀ (a, b). ( (a ∈ N ∧ b ∈ N) ⇒ (f(a, 0) = g(a))) ∧
∀ (a, b). ( (a ∈ N ∧ b ∈ N) ⇒ (f(a, b + 1) = h(a, b, f(a, b))))



66 Dominique Cansell and Dominique MéryFrom the haraterization of the onstants, the totality of f is derived,sine both g and h are total. The reader should be very areful on the fun-tional notation f(a, 0) whih intends to mean the funtional appliation butalso the membership (a, 0) ∈ f , when f is not yet proved to be funtional.The system uses three variables: two variables are the input values and thethird one is the output value: VARIABLES result.The required properties are the invariane of the INVARIANT lause andthe partial orretness of the system with respet to the pre and postonditionsof the omputation of the funtion de�ned by the primitive reursion rule. Theinvariant property is very simple to establish:The INVARIANT lause is very simple for the �rst model and is in fat atyping invariant. The �rst model has only one visible event and others eventsare hidden by the stuttering step; the omputation event models or simulatesthe omputation of the resulting value and it simulates the end of a hiddenloop. INVARIANT
result ∈ NINITIALIZATION
result :∈ N

omputation =begin
result := f(u, v)endThe loop will appear in the further model whih is a re�nement of

primrec0:MODEL primrec0CONSTANTS u, v, g, h, fPROPERTIES
u ∈ N ∧ v ∈ N ∧
g ∈ N −→ N ∧ h ∈ N × N × N −→ N ∧
f ∈ N × N −→ N ∧
∀ (a, b). ( (a ∈ N ∧ b ∈ N) ⇒ (f(a, 0) = g(a))) ∧
∀ (a, b). ( (a ∈ N ∧ b ∈ N) ⇒ (f(a, b + 1) = h(a, b, f(a, b))))VARIABLES
resultINVARIANT
result ∈ NINITIALIZATION
result :∈ NEVENTSomputation =begin

result := f(u, v)endEND



The event-B Modelling Method 67Iterative Computations from Primitive ReursionThe next model primrec1 (see �gure 12) is a re�nement of primrec0; it in-trodues a new event alled step and step is simulating the progression of aniterative proess satisfying a loop invariant.REFINEMENT primrec1REFINES primrec0VARIABLES cx, cy, cresult, resultINVARIANT
cx ∈ N ∧ cy ∈ N ∧ cresult ∈ N ∧
cx = u ∧ 0 ≤ cy ∧ cy ≤ v ∧ cresult = f(cx, cy)INITIALISATION
cx := u ‖ cy := 0 ‖ cresult := g(u) ‖ result :∈ NEVENTSomputation =when

v − cy = 0then
result := cresultend ;step =when
v − cy 6= 0then
cy := cy + 1 ‖
cresult := h(cx, cy, cresult)endEND Fig. 12. Model primrec1The new system has two visible events:1. The �rst event omputation intends to model the end of the iteration andit onretizes the event omputation.2. The seond event step is the visible underlying step of the previous stut-tering step.The omputation proess is organized by the two guards of the two events;it leads us to the following algorithm, whih aptures the essene of the lastB models. The �nal development inludes two B models related by the re-�nement relationship and provides an algorithm for omputing the spei�edfuntion. The resulting algorithm is alled F and it uses the algorithms of gand h. The invariant is derived from the B model and does not need further



68 Dominique Cansell and Dominique Méryproofs. The development an be instantiated with respet to funtions g and
h whih are supposed to be primitive reursive.preondition : u, v ∈ Npostondition : result = f(u, v)loal variables: cx, cy, cresult ∈ N

cx := u;
cy := 0;
cresult := G(u);while cy ≤ v doInvariant : 0 ≤ cy ∧ cy ≤ v ∧ cx = u ∧ cresult = f [cx, cy]

cresult := H [cx, cy, cresult];
cy := cy + 1;;

result := cresult;Algorithm 1: Iterative algorithm F for omputing the primitive reursive fun-tion fApplying the Development for Addition, Multipliation,ExponentiationAdditionThe mathematial funtion addition is de�ned by the following rules:
∀x, y ∈ N :

{

addition(x, 0) = π1
1(x)

addition(x, y + 1) = σ(addition(x, y))
,We assign to g the primitive reursive funtion ζ and to h the primitivereursive funtion σ; the primre development an be replayed. The result-ing algorithm is given by substituting g and h respetively by ζ and σ. Thealgorithm is denoted ADDITION .MultipliationThe mathematial funtion multiplication is de�ned by the following rules:

∀x, y ∈ N :

{

multiplication(x, 0) = ζ()
multiplication(x, y + 1) = addition(x, multiplication(x, y))

,We assign to g the primitive reursive funtion ζ() and to h the primitivereursive funtion addition; the primre development an be replayed. Theresulting algorithm is given by substituting g and h respetively by π1
1 and

addition . The algorithm is denoted MULTIPLICATION .



The event-B Modelling Method 69preondition : x, y ∈ Npostondition : result = ADDITION(x, y)loal variables: cx, cy, cresult ∈ N

cx := x;
cy := 0;
cresult := π1

1(x);while cy ≤ y doInvariant : 0 ≤ cy ∧ cy ≤ y ∧ cx = x∧
cresult = addition[cx, cy]

cresult := σ[cresult];
cy := cy + 1;;

result := cresult;Algorithm 2: Iterative algorithm ADDITION for omputing the primitivereursive funtion additionpreondition : x, y ∈ Npostondition : result = multiplication(x, y)loal variables: cx, cy, cresult ∈ N

cx := x;
cy := 0;
cresult := ζ();while cy ≤ y doInvariant : 0 ≤ cy ∧ cy ≤ y ∧ cx = x∧

cresult = multiplication[cx, cy]

cresult := addition[cx, cresult];
cy := cy + 1;;

result := cresult;Algorithm 3: Iterative algorithm MULTIPLICATION for omputing theprimitive reursive funtion multiplicationExponentiationThe mathematial funtion exponentiation is de�ned by the following rules:
∀x, y ∈ N :
{

exponentiation(x, 0) = σ(ζ())
exponentiation(x, y + 1) = multiplication(x, exponentiation(x, y))

,We assign to g the primitive reursive funtion σ(ζ()) (sine the om-position of two primitive reursive funtions is still primitive reursive) andto h the primitive reursive funtion multiplication; the primre develop-ment an be replayed. The resulting algorithm is given by substituting gand h respetively by σ(ζ()) and multiplication. The algorithm is denoted
EXPONENTIATION .



70 Dominique Cansell and Dominique Mérypreondition : x, y ∈ Npostondition : result = exponentiation(x, y)loal variables: cx, cy, cresult ∈ N

cx := x;
cy := 0;
cresult := σ(ζ());while cy ≤ y doInvariant : 0 ≤ cy ∧ cy ≤ y ∧ cx = x∧

cresult = exponentiation[cx, cy]

cresult := MULTIPLICATION [cx, cresult];
cy := cy + 1;;

result := cresult;Algorithm 4: Iterative algorithm EXPONENTIATION for omputing theprimitive reursive funtion exponentiation4.2 Other Ways to Compute Addition and MultipliationIf we onsider the development for the funtions addition and multiplication,we an reuse the �rst model of eah one and improve the �nal resulting algo-rithms. We assume that the mathematial funtions are supported by the Bprover and we do not need to de�ne them. The proved models an be reusedin other developments and we are going to re�ne, in a di�erent way, bothfuntions.Developing a New Multipliation AlgorithmThe �rst model states the problem to solve namely the multipliation of twonatural numbers; the seond one provides the essene of the algorithmi so-lution and the last one implements naturals by sequenes of digits. Let a and
b two naturals. The problem is to ompute the value of the expression a∗,where ∗ is the mathematial funtion standing for natural multipliation. Thefuntion multiplication is de�ned by an in�x operator ∗. The �rst model (see�gure 13) is a one-shot model omputing in one step the result.Now, we should get an idea and apply it on the model multiplication0.There are several ways to de�ne the multipliation: either (a−1)∗b (primitivereursive funtion) or a∗b = (2∗a)∗(b/2). We hoose the last one, sine it is thefaster one and simple to implement. We defvaluesine two new variables namely
cx et cy, for taking are of initial values of a and b (values-passing mehanism).The indution step will be driven by B whih is stritly dereasing. The newvariable M stores any value of cx when cy is odd.



The event-B Modelling Method 71MODEL multiplication0CONSTANTS
a, bPROPERTIES

a ∈ N ∧ b ∈ N ∧VARIABLES
x, y, mINVARIANT
x ∈ N ∧ y ∈ N ∧
x = a ∧ y = b ∧ m ∈ NINITIALISATION
x := a ‖ y := b ‖ m :∈ NEVENTSomputation =begin

m := a ∗ bendENDFig. 13. Model multiplication0VARIABLES
cx, cy, x, y, M, mINVARIANT
cx ∈ N ∧ cy ∈ N ∧ M ∈ N ∧
cx ∗ cy + M = x ∗ yINITIALISATION
cx, cy, x, y, m :∈ (x = a ∧ y = b ∧ cx = a ∧ cy = b ∧ m ∈ N) ‖
M := 0The event computation ours, when cy is equal to 0. The gluing invariantallows us to onlude that M ontains the value of a ∗ b.omputation =when

(cy = 0)then
m := MendTwo new events prog1 and prog2 will help in the progression of cy towards

0.



72 Dominique Cansell and Dominique Méryprog1 =when
(cy 6= 0) ∧ even(cy)then
cx := cx ∗ 2 ‖ cy := cy/2endprog2 =when
(cy 6= 0) ∧ odd(cy)then
cx := cx ∗ 2 ‖
cy := cy/2 ‖
M := M + cxendWhere even(cy) = ∃x · (x ∈ N ∧ cy = 2 ∗ x) and odd(cy) = ∃x · (x ∈

N ∧ cy = 2 ∗ x + 1). The proofs are not hard; Atelier B generated 18 proofobligations only 3 are disharged interatively. Finally, we obtain the model
multiplication1 in the �gure 14.A further re�nement may lead to the implementation of natural numbersby sequenes of digits; The division and the multipliation by two are imple-mented by shifting digits. On the other hand, one an derive a well-knownalgorithm 5 for omputing the multipliation funtion.Addition of Two Natural NumbersThe addition funtion an also be redeveloped. The development is deom-posed into three steps. The �rst step writes a one-shot model (see the �gure 15)omputing in one step the required result, namely the addition of two naturalnumbers. Let a and b be two naturals. The problem is to ompute the valueof the expression a+b, where + is the mathematial funtion standing for thenatural addition.The de�nition of a + b using a/2 (and b/2) is based on the followingproperties:

a b a + b
2 ∗ n 2 ∗ m 2 ∗ (n + m)
2 ∗ n 2 ∗ m + 1 2 ∗ (n + m) + 1

2 ∗ n + 1 2 ∗ m 2 ∗ (n + m) + 1
2 ∗ n + 1 2 ∗ m + 1 2 ∗ (n + m) + 2Using the four properties, we try to obtain a general indution shema veri-�ed by variables and the four properties lead to the general form: (a+b)∗C+P .



The event-B Modelling Method 73REFINEMENT multiplication1REFINES multiplication0VARIABLES
cx, cy, x, y,M, mINVARIANT
cx ∈ N ∧
cy ∈ N ∧
M ∈ N ∧
cx ∗ cy + M = x ∗ yINITIALISATION
cx, cy, x, y,m :∈ (x = a ∧ y = b ∧ cx = a ∧ cy = b ∧ m ∈ N) ‖
M := 0EVENTSomputation =when

(cy = 0)then
m := Mendprog1 =when
(cy 6= 0) ∧ even(cy)then
cx := cx ∗ 2 ‖ cy := cy/2endprog2 =when
(cy 6= 0) ∧ odd(cy)then
cx := cx ∗ 2 ‖
cy := cy/2 ‖
M := M + cxendEND Fig. 14. Re�nement model multiplication1The disovery of the relation is based on the analysis of possible transfor-mations over variables; Manna [81℄ has given hints for stating an indutiveassertion from properties over values of variables. Assoiativity and the om-mutativity of the mathematial addition justify the form. Moreover, the forman also be justi�ed by the binary oding of A and B as follows:
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74 Dominique Cansell and Dominique Mérypreondition : a, b ∈ Npostondition : m = multiplication(x, y)loal variables: cx, cy, x, y, m, M ∈ N

x := a;
y := b;
cx := x;
cy := y;
M := 0;while cy 6= 0 doInvariant : 0 ≤ M ∧0 ≤ cy∧cy ≤ y∧cx∗cy+M = x∗y∧x = a∧y = bif (cy 6= 0) ∧ even(cy) then

cx := cx ∗ 2||cy := cy/2;if (cy 6= 0) ∧ odd(cy) then
cx := cx ∗ 2||cy := cy/2||M := M + cx;;

m := M ;Algorithm 5: New Iterative algorithm MULTIPLICATION for omputingthe primitive reursive funtion multiplicationMODEL addition0CONSTANTS
a, bPROPERTIES

a ∈ N ∧
b ∈ N ∧VARIABLES
x, y, resultINVARIANT
x ∈ N ∧ y ∈ N ∧ result ∈ N

x = a ∧ y = bINITIALISATION
x := a ‖ y := b ‖ result :∈ NEVENTSomputation =begin

result := a + bendENDFig. 15. Model addition0 for the addition
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.2+(A0 +B0) (6)The last equation 6 tells us that we obtain a binary addition of the lastdigits of the two numbers and we have to store powers of 2, while omputing.Two new variables are introdued: C for storing the powers of 2 and P forstoring the partial result. We derive the following invariant and the initialonditions:VARIABLES
A, B, P, a, b, p, CINVARIANT
A ∈ N ∧ B ∈ N ∧ P ∈ N ∧ C ∈ N ∧
(A + B) ∗ C + P = a + bINITIALISATION
a, b, A, B, p : (a ∈ N ∧ b ∈ N

∧ p ∈ N ∧ P ∈ N ∧ C ∈ N ∧ A = a ∧ B = b) ||
P, C := 0, 1

add =when
(B = 0) ∧ (A = 0)then
p := Pend ;

The one-shot event of the previousmodel is then re�ned by the next event;the result is in the variable P , when Aand B are two variables ontaining 0.Four new events are added to the ur-rent model; eah event orresponds toa ase of properties given in the arrayabove.Four new events are introdued in this model:
prog1 =when

even(A) ∧ even(B)then
A := A/2 || B := B/2 ||
C := 2 ∗ Cend ;

prog2 =when
odd(A) ∧ even(B)then
A := A/2 || B := B/2 ||
C := 2 ∗ C || P := C + Pend ;
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prog3 =when

even(A) ∧ odd(B)then
A := A/2 || B := B/2 ||
C := 2 ∗ C || P := C + Pend ;

prog4 =when
odd(A) ∧ odd(B)then
A := A/2 || B := B/2 ||
C := 2 ∗ C || P := 2 ∗ C + PendWe have to ode basi operations for omputing C+P , 2∗C and 2∗C+P .

C + P is solved by storing a 1 digit in the orresponding loation. 2 ∗ C isa shifting operation. 2 ∗ C + P is solved by managing a arry. Now, we anre�ne the urrent model.Managing the CarryThe goal of the arry is to implement the basi operation 2 ∗ C + P ; P isonretized by the store Q and the arry R.VARIABLES
A, B, Q, R, a, b, p, CINVARIANT
Q ∈ N ∧ R ∈ N ∧ (R = 0 ∨ R = 1) ∧ P = C ∗ R + QINITIALISATION
a, b, A, B, p : (a ∈ N ∧ b ∈ N ∧ C ∈ N ∧ A = a ∧ B = b) ||
p :∈∈ N

Q, R, C := 0, 0, 1The re�ned event add uses the new variables Q and C. The gluing invariant(thanks to it) maintains the relationship over P and the new variables.
add = when (B = 0) ∧ (A = 0) then p := C ∗ R + Q end ;Events prog1, prog2, prog3, prog4 are re�ned and modi�ed by introduingthe two new variables. The new variables are modi�ed aording to P .

prog1 =when
even(A) ∧ even(B)then
A := A/2 || B := B/2 || R := 0
Q := C ∗ R + Q || C := 2 ∗ Cend ;
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prog4 =when

odd(A) ∧ odd(B)then
A := A/2 || B := B/2 || R := 1
Q := C ∗ R + Q || C := 2 ∗ Cend

prog2 =when
odd(A) ∧ even(B)then
A := A/2 || B := B/2 ||if R = 0 then

Q := C + Qend ||
C := 2 ∗ Cend ;

prog3 =when
even(A) ∧ odd(B)then
A := A/2 || B := B/2 ||
C := 2 ∗ C ||if R = 0 then
Q := C + Qendend ;This model is validated by the tool Atelier B [52℄ whih generate 56 proofobligations and 15 are disharhed interatively. Details are inrementallyadded; eah model provides a view of the omputing funtion. The modelsare related by the re�nement relationship and the last model an now bere�ned to produe odes.Prodution of CodesThe re�nement proess leads to basi operations over natural numbers thatan be implemented by operations over bits. The B language provides se-quenes but experiene shows that proofs are harder when sequenes are usedin a given model and we use the following de�nitions of sequenes:SETS bit = {ZERO, ONE}CONSTANTS codePROPERTIES

code ∈ N × Z −→ (Z 7→ bit) ∧
∀k · (k ∈ Z ⇒ code(0, k) = ∅ ∧
∀(n, k) · (n ∈ N ∧ n 6= 0 ∧ k ∈ Z ⇒

code(2 ∗ n, k) = {k 7→ ZERO} ∪ code(n, k + 1)) ∧
∀(n, k) · (n ∈ N ∧ k ∈ Z ⇒

code(2 ∗ n + 1, k) = {k 7→ ONE} ∪ code(n, k + 1))) ∧
∀(n, k, x) · (n ∈ N ∧ k ∈ Z ∧ x ∈ dom (code(n, k)) ⇒ x ≥ k)



78 Dominique Cansell and Dominique MéryThe reursive de�nition is validated by our previous works [40℄ on thedevelopment of reursive funtions using the B event-based method. We havede�ned shemas allowing to evaluate those funtions. A sequene is oded byan integer interval. For instane, we give an example of the seond modelof the multipliation: shifting of digits is implemented by an insertion of 0at the head of the sequene; removing a bit at the head orresponds to themultipliation by 2. Questions on the reusability and the deomposition ofsystems remain to be solved and will be part of further works making themethod more pratial.VARIABLES
A, B, P, a, b, p, cA, cB, kA, kBINVARIANT
kA ∈ Z ∧
kB ∈ Z ∧
cA ∈ Z 7→ bit ∧
cA = code(A, kA) ∧
cB ∈ Z 7→ bit ∧
cB = code(B, kB)

prog1 =when (cB 6= ∅) ∧ cB(kB) = ZERO thenif cA 6= ∅ then
cA := {kA − 1 7→ ZERO} ∪ cA || kA := kA − 1end ||

cB := {kB} ⊳− cB || kB := kB + 1 || A := 2 ∗ A || B := B/2end
prog2 =when (cB 6= ∅) ∧ cB(kB) = ONE thenif cA 6= ∅ then

cA := {kA − 1 7→ ZERO} ∪ cA || kA := kA − 1end ||
cB := {kB} ⊳− cB || kB := kB + 1 ||
A := 2 ∗ A || B := B/2 || M := M + AendThe oding allows us to implement the addition C +Q, sine C is a powerof two and sine C is greater than Q:
code(C + Q, 0) = code(C, 0) ⊳− code(Q, 0).



The event-B Modelling Method 79These properties (and other ones) are really proved in another B mahineusing only the PROPERTIES and ASSERTIONS lauses like in the work onstruture [11℄. Atelier B generated 10 proof obligations whih are dishargedinteratively.We an give a re�nement of the addition but only two events are reallygiven. cp is the ode of p, cQ the ode of Q and cC the ode of C.
add =when cB = ∅ ∧ cA = ∅ thenif R = 1 then cp := cC ⊳− cQelse cp := cQendend

prog1 =when cB(kB) 6= ONE ∧ cA(kA) 6= ONE then
cB := {kB} ⊳− cB || kB := kB + 1 ||
cA := {kA} ⊳− cA || kA := kA + 1||
cC := {0 7→ ZERO} ∪ shift(cC) || R := 0 ||if R = 1 then cQ := cC ⊳− cQ endendThe funtion shift shifts any value of a sequene (to begin always by 0).Atelier B generated 95 proof obligations and 53 are disharhed interativelybut we an do better using the assertion lauses.A stronger re�nement an now be obtained from the urrent developedmodel. A oding on �nite sequene of bits (bs + 1) onstrains the abstratode to ontain a bounded number of bits. We onsider the natural numbers

a and b are odable and we obtain a onrete ode for variables A and B,namely CA and CB.
CA, CB : (

CA ∈ 0..bs → bit ∧
CA = code(a, 0) ∪ ((0..bs) − dom (code(a, 0))) × {ZERO} ∧
CB ∈ 0..bs → bit ∧
CB = code(b, 0) ∪ ((0..bs) − dom (code(b, 0))) × {ZERO})A variable K plays the role of kA and kB and the proess halts, when kis bs + 1. The gluing invariant for variables A, B, p and Q (Cp and CQ arethe onrete ode) is the following one:
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K ∈ 0..bs + 1 ∧ K = kA ∧ K = kB ∧ LO ∈ −1..K − 1 ∧
CA ∈ 0..bs → bit ∧
((K..bs) � CA) = cA ∪ ((K..bs) − dom (cA)) × {ZERO} ∧
CB ∈ 0..bs → bit ∧
((K..bs) � CB) = cB ∪ ((K..bs) − dom (cB)) × {ZERO} ∧
Cp ∈ 0..bs + 1 → bit ∧ CQ ∈ 0..bs → bit ∧
(0..LO � CQ = cQ) ∧ (LO ≥ 0 ⇒ CQ(LO) = ONE) ∧
∀i · (i ∈ (LO + 1)..bs ⇒ CQ(i) = ZERO)Where LO is a new variable; it is the position of the last ONE in CQ.Events add and prog1 are re�ned in the following onrete events:

add =when K = bs + 1 thenif R = 1 then Cp := CQ ⊳−{bs + 1 7→ ONE}else Cp := CQ ⊳−{bs + 1 7→ ZERO}endend ;

prog1 =when K ≤ bs ∧ CB(K) 6= ONE ∧ CA(K) 6= ONE then
K := K + 1 || R := 0 ||if R = 1 then CQ(K) := ONE || LO := K endend ;We have to express that the oding of the result is in 0..bs + 1 → bit andthat it might have an over�ow. Multipliation by two (K := K + 1), divisionby 2 (K := K + 1) and addition (CQ(K) := ONE) are implemented usingthis oding. Atelier B generated 81 proof obligations and 25 are disharhedinteratively.Properties of ModelsIn the model of the �gure 16, we have proved all properties used on theabstrat oding. Two indution theorems are also proved in this mahine (theseond and third assertion).4.3 Design of Sequential AlgorithmsThe design of a sequential algorithm starts by the statement of the spei�-ation of the algorithm; the spei�ation of the algorithm is expressed by apreondition over input data, a postondition over output data and a rela-tion between input and output data.The extension of the guarded ommands



The event-B Modelling Method 81MODEL CodeSETS bit = {ZERO, ONE}CONSTANTS divtwo, code, power2, suc, shift, pred1PROPERTIESDe�nition of divtwo
divtwo ∈ N → N ∧ ∀x · (x ∈ N ⇒ divtwo(x) = x/2) ∧De�nition of suc (suessor)
suc ∈ N → N ∧ ∀x · (x ∈ N ⇒ suc(x) = x + 1) ∧De�nition of code
code ∈ N × Z → (Z ↔ bit) ∧
∀k · (k ∈ Z ⇒ code(0, k) = ∅) ∧
∀(n, k) · (n ∈ N ∧ n 6= 0 ∧ k ∈ Z ⇒

code(2 ∗ n, k) = {k 7→ ZERO} ∪ code(n, k + 1)) ∧
∀(n, k) · (n ∈ N ∧ k ∈ Z ⇒

code(2 ∗ n + 1, k) = {k 7→ ONE} ∪ code(n, k + 1))) ∧De�nition of power2 (2n), pred1 (predeessor) and shift (shift ode)
power2 ∈ N → N ∧ power2(0) = 1 ∧
∀k · (k ∈ N ⇒ power2(k + 1) = 2 ∗ power2(k)) ∧
pred1 ∈ Z → Z ∧ ∀x · (x ∈ Z ⇒ pred1(x) = x − 1) ∧
shift ∈ (Z 7→ bit) → (Z 7→ bit) ∧ ∀y · (y ∈ Z 7→ bit ⇒ shift(y) = (pred1; y))ASSERTIONS
∀c · (c ∈ N ⇒ ∃y · (y ∈ N ∧ (c = 2 ∗ y ∨ c = 2 ∗ y + 1)));A number c is odd or even
∀P · (P ⊆ N ∧ 0 ∈ P ∧ suc[P ] ⊆ P ⇒ N ⊆ P );It's the reurrene theorem. P is the set of all value whih satify a property
∀K · (K ⊆ N ∧ 0 ∈ K ∧ divtwo−1[K] ⊆ K ⇒ N ⊆ K);It's another reurrene theorem, like P (n/2) ⇒ P (n) ..
∀(n, k, x) · (n ∈ N ∧ k ∈ Z ∧ x ∈ dom (code(n, k)) ⇒ x ≥ k);All value in dom (code(n, k)) are greater or equals than k

code ∈ N × Z → (Z 7→ bit);Now a ode is a partial funtion
∀n · (n ∈ N ⇒ power2(n) > 0);

2n is always greater than 0

∀(n, c, k) · (n ∈ N ∧ c ∈ N ∧ power2(n) > c ∧ k ∈ Z ⇒
code(power2(n) + c, k) = code(power2(n), k) ⊳− code(c, k));It's our property to implement the addition

∀(n, k, x) · (n ∈ N ∧ k ∈ Z ∧ x ∈ dom (shift(code(n, k))) ⇒ x > k);
∀(n, k) · (n ∈ N ∧ k ∈ Z ⇒ shift(code(n, k)) = code(n, k + 1))A useful property of shift (it's now a shift)
∀n · (n ∈ N ⇒ code(power2(n), 0) = (0..n − 1) × ZERO ∪ {n 7→ ONE})A property whih evaluates the ode of 2nend Fig. 16. Model for deriving proofs on the abstrat oding



82 Dominique Cansell and Dominique Mérylanguage by C. Morgan [88℄ allowsone to initiate a development by re�ne-ment aording to a set of rules. However, no mehanial tool allows one tohek the re�nement; the notation x : [pre, post] intends to mean a statementwhih is orret with respet to the pre and post onditions. It is exatlythe ase, when one starts an event-B development, sine one should state amagial event whih is orret with respet to the pre and post onditions.If we onsider x : [pre, post] and if we assume that x is free in pre and post,
x : [pre, post] is a statement whih may modify x but only x and whih satis-�es the HOARE triple: {pre} x : [pre, post] {post}.An equivalent event is de�ned as follows:event =any zwhere

pre(x) ∧ post(x, z)then
x := zendWe have illustrated the event B method by simple sequential algorithmsand we have emphasized the possibility to reuse the previous development. Inthe next setion, we developed a sorting algorithm.5 Combining Coordination and Re�nement for SortingThe oordination paradigm improves the development of onurrent/distributedsolutions, beause it provides simple way to ommuniate between proessesvia a data struture alled a tuple spae. Coordination priniples and event-driven system development priniples an be fruitfully ombined to developsystems and to analyse the development of di�erent solutions of a given prob-lem. Bene�ts are inherited from both frameworks: the B event-driven approahprovides the re�nement and the oordination framework provides a simpleomputation model. The sorting problem is redeveloped in the B event-drivenmethod using oordination priniples for algorithms and two programmingparadigms are applied ie merging and splitting list to sort.5.1 IntrodutionOverview The oordination paradigm [47, 100℄ improves the development ofonurrent/distributed solutions, beause it provides simple way to ommuni-ate between proesses via a data struture alled a tuple spae. Coordination



The event-B Modelling Method 83and event-driven system development an be fruitfully ombined to onstrutsequential reursive programs and to analyse the development of di�erent so-lutions of a given problem, namely the sorting problem. The ombination ex-ploits the fundamental re�nement relationship de�ned in the B event-drivenapproah [12, 13, 38℄ and leads to a pratial framework for addressing theanalysis of programs development.Coordination The oordination paradigm appears in di�erent program-ming environments as LINDA [47, 100℄; the main idea is really simple: a ol-letion of proesses or agents an ooperate, ommuniate and exhange datathrough a unique struture alled a tuple spae. A tuple spae is a heap thatan ontains items and several operations are authorized to proesses, namelyto put an item in the tuple spae, to withdraw an item or to onsult. Imple-mentation details are hidden. Any programming language an be extended byspei� operations related to the tuple spae, as for instane the C LINDAenvironment whih extends the C programming language. The oordinationparadigm fouses on the development of ativities that are inherently onur-rent and that are simply made oherent through the oordination primitives.As soon as a oordination program is written, tools as ompilers provide atranslation into a lower level whih manages ommuniations; it means thatommuniations are used without toil, sine we do not take are how om-muniations are really implemented. The oordination omputation model isdeveloped in the GAMMA [20℄ model and a kernel of a methodology relatedto the proof if given; Chaudron [50℄ de�nes a re�nement in a language of o-ordination for GAMMA lose to tehniques of bisimulation. We do not de�nenew re�nements. The CHAM (Chemial Abstrat Mahine) is a hemial viewof the oordination omputation model. However, even if GAMMA intends topromote the methodologial aspets of programming development, nothing islearly studied for the relationship with the re�nement of events systems.Integration of oordination and event-driven systems Event-driven sys-tems are inrementally derived from a very abstrat model into a �nal onretemodel through re�nement steps. The B event-driven tehnique is based on thevalidation by proof of eah re�nement step and it starts by a system analysiswhere mathematial details are arefully analysed and proved or disprovedby the proof tool. The idea is to add the oordination primitives as eventswhih modify the tuple spae an to get for free a re�nement in the oordina-tion framework. A onsequene is to provide a way to exeute event-drivensystems as oordinative events set and to allows the re�nement of general o-ordinative strutures. This exerise fouses on the use of both tehniques foranalysing the sorting problem; we apply two main sorting paradigm namelythe splitting (quiksort) or the merging. Finally, we obtain a �nal onretemodel whih is a sequential algorithm using a stak and whih gives a nonreursive algorithm in the quiksort family.The oordination paradigm was introdued and implemented in LINDA [47,100℄ and a C LINDA ompiler was e�etively developed. The original ideais to synhronise proesses or agents through a shared data spae alled a



84 Dominique Cansell and Dominique Mérytuple spae, using spei� primitives extending the programming language.The programming language an be C, SML or a Prolog-like one; oordinationprimitives manage ommuniation among proesses or agents. Coordinationis information-driven and makes interation protools simple and expressive.For instane, the implementation of Galibert [62℄ provides a simple way toprogram in C++ and to use a powerful high performant omputer namelythe Origin 2000 SGI. Here, we use oordination as a simple way to stateations on data; it is a less strutured approah ontrary to lassial program-ming languages. Every abstrat model (in the B event-based approah) anbe transformed into a oordinative program; however, we re�ne as muh aspossible to obtain a sequential algorithm.When one write a oordinative program, one has to identify proesses oragents of the system; proesses are expressed in a programming notation andthe oordination framework allows to state ommuniations between proessesthrough the tuple spae. Coordination primitives inludes the reading of avalue in the tuple spae, the writing of a value in the tuple spae, the waitingof a value in the tuple spae, . . . Events play the r�le of ations of agents orproesses and ooperate to the global omputation, if any.5.2 A Famous Case Study: the Sorting ProblemSorting a list of values means that one tries to �nd a permutation of valuessuh that the resulting list is sorted. We de�ne two onstants, f and m, withthe following properties:
m ∈ N ∧
f ∈ 1..m  Nf stands for the abstrat array whih ontains m natural numbers. Allelements of the list are di�erent. The variable g initially set to the initialvalue f of the list, ontains the sorted list in an asending way. The invariantmust state that values are preserved between g and f. The invariant holds atthe beginning, sine g = f ; the unique event of the system is sorting and itsorts in one step g.INVARIANT

g ∈ 1..m −→ N ∧ran(g) = ran(f)

sorting =begin
g : N ∧ran(g) = ran(f)∧
∀x.(x ∈ 1..m − 1 ⇒ g(x) ≤ g(x + 1))endWe know that there is one (and only one) permutation for sorting the list.The event sorting is then enabled. The simpliity of the sorting event allows



The event-B Modelling Method 85us to derive the orretness of the abstrat system. The sorting is done inone step, whih may seem to be magial. The abstrat system is re�ned intoanother event system whih implements a sorting tehnique as for instanethe quiksort, the merge sort, . . . . The main idea is to use the oordinationparadigm to remove the reursiveness of the solution. The �rst abstrat modelis alled BASIC-SORTING.5.3 Applying Two Sorting ParadigmsThe previous system is an abstrat view of the sorting proess and sortingalgorithms are based on spei� paradigms leading to well known solutions.In our ase, we onsider two paradigms:
• merging two sorted lists to produe a sorted list: merge sortsand insertion sorts use the basi tehnique of merging two sorted lists; theway for ombining sorted lists may be di�erent and the size of the twolist may be also di�erent. The insertion sort ombines a list with only oneelement and any other sorted list. The Von Neuman sort ombines two listshaving the same size. Nevertheless, the basi tehnique is the merging oftwo sorted lists and the global proess inrements the size of intermediatelists, whih is a termination ondition.
• splitting a list into two lists to obtain two partitioned lists:on the ontrary, a list an be splitted into two lists suh that elementsof the �rst list are smaller than elements of the seond one; the famousquiksort is an appliation of the paradigm; the introdution of the pivot isvery important for the omplexity of the sort. The seletion sort is anotherexample of sorting tehnique and is an extreme ase of the quiksort - ie thepivot is the extreme left or right position in the splitted list. The proessonverge to a list of one-element sorted lists, whih are orretly loated.The oordination paradigm provides us a omputation model and we usethe event-driven paradigm for de�ning operations on the tuple spae. The datastrutures are supported by the tuple spae. A list is de�ned as an intervalover the set of disrete values 1..m where m is a onstant of the problem. Aninterval ontains suessive values, when non empty. An interval is a subsetof 1..m with onseutive values and intervals are a partition of 1..m. Theinvariant will be strengthened to take into aount properties of intervalslater.For the moment, the following invariant says that the tuple spae TS isa partition of 1..m; operations on the tuple spae are expressed by eventsmodifying the variable TS:

TS ⊆ P( 1..m )∧
∀I.(I ∈ TS ⇒ I 6= ∅) ∧
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∀(I, J).(

I ∈ TS ∧ J ∈ TS ∧ I 6= J
⇒

I ∩ J = ∅
) ∧

∀i.(i ∈ 1..m ⇒ ∃I.(I ∈ TS ∧ i ∈ I))The re�nement of the urrent model BASIC_MODEL leads us either tosplit intervals, or to ombine intervals; we obtain two possible re�ned models:
• MERGE-SORT merging two intervals to produe an interval : the sortingproess will stop when only one interval is remaining in the tuple spae.
• SPLIT-SORT splitting an interval into two intervals : the splitting sort-ing will stop when no more splitting will be possible.We give no more details about the way intervals are hosen, sine thesedetails may appear later in the re�nement proess. Both models are still tore�ne to detail operations of merging and splitting. No implementation detailis addressing the problem of parallel exeution, sine it is an abstrat model.Bottom Up Proess MERGE-SORTThe bottom up proess ombines intervals by maintaining the invariant of thesorting problem. The merging of two intervals assumes that the restrition ofg on eah interval is sorted. The property is added to the previous invariant

∀(i, j).(i ∈ I ∧ j ∈ I ∧ i ≤ j ⇒ g(i) ≤ g(j)))Initial onditions state that the tuple spae ontains only intervals withone element; there is an interval for every possible values of 1..m; g is set tothe initial value of the list to sort.Init =begin
g := f ‖ TS := {x|x ⊆ 1..m ∧ ∃i.(i ∈ 1..m ∧ x = i..i)}endWe reall that the merge proess stops, when only one interval is in thetuple spae and it ontains only 1..m. Using the invariant we an prove thatg is sorted. The re�ned sorting event is



The event-B Modelling Method 87sorting =when 1..m ∈ TS thenskipend ;The sorting proess is detailed in a way that identi�es intermediate statesof the variable g; these intermediate states state that the set of intervals isonverging towards a unique interval modelling the sorted list. A progressevent is de�ned to model the omputation of a merging step. The new event
merge_progress withdraws two intervals from TS and deposits a new intervalwhih is the merging of the two withdrawn intervals in TS. The merging oftwo intervals derements the number of intervals and helps in the onvergeneof the proess. merge_progress =any I, J , gp where

I ∈ TS ∧
J ∈ TS ∧
I 6= J ∧
gp ∈ I ∪ J −→ N ∧ran(gp) = ran((I ∪ J) � g)
∀(i1, i2).(

i1 ∈ I ∪ J ∧
i2 ∈ I ∪ J ∧
i1 ≤ i2
⇒

gp(i1) ≤ gp(i2))then
g := g ⊳− gp ‖
TS := TS − {I, J} ∪ {I ∪ J}endThe model is not yet the merging sort, sine it is not e�iently imple-mented. However, the essene of the merging sort is expressed in the urrentmodel.Further re�nements introdue details to obtain di�erent sorting algorithmsbased on the merging paradigm, as the merging sort, the insertion sort or theVon Neumann sort. At this point, we not really an interval, sine I ∪ J isnot neessarily an interval, but a further re�nement will be able to hooseadequately intervals to satisfy that onstraint.



88 Dominique Cansell and Dominique MéryTop Down SPLIT-SORTThe quiksort is based on a strategy of deomposition alled splitting list andthe re�nement of the model basi_sorting adds a new invariant expressingthe states of intervals resulting from splitting them. The �nal goal is to obtaina tuple spae ontaining only intervals with one element. Remember that thequiksort splits an interval into two intervals in a way suh that elements ofthe �rst interval are smaller than elements of the seond one. The invariantis strengthened by the property, that intervals an be sorted with respet totheir values.
∀(I, J).(

I ∈ TS ∧ J ∈ TS ∧ I 6= J
⇒

(∀(i, j).(
i ∈ I ∧ j ∈ J ∧ i < j
⇒

g(i) ≤ g(j))))When two numbers are in an interval, values between those two values arealso in the interval.
∀I.(

I ∈ TS
⇒

(∀(i, j).(
i ∈ I ∧ j ∈ I
⇒

i..j ⊆ I)))Initial onditions satisfy the invariant by setting a unique interval into thetuple spae: only 1..m is in the tuple spae.The split proess starts in a tuple spae with only one interval and halts,when every interval i..i (for every value i in 1..m) is in the tuple spae. Infat, no more splitting event is possible.Init =begin g := f ‖
TS := {1..m}end sorting =when ∀i.(i ∈ 1..m ⇒ i..i ∈ TS)thenskipend ;



The event-B Modelling Method 89The progress of the global proess is ahieved by splitting as long as pos-sible intervals of the tuple spae; only intervals with at least two elements anbe splitted. The new event hooses a value alled a pivot: it splits an intervalinto two smaller ones and it updates g. Obviously, the way to update g is veryruial for the implementation, as well as the hoie of the pivot. The seletionsorting is one possible re�ned model that an be derived, if the hoie of thepivot is speially done: the pivot is the greatest or the smallest value of theinterval.split_progress =any I, k, gp, x where
I ∈ TS ∧ k ∈ I ∧ ∃j.(j ∈ I ∧ j > k) ∧ gp ∈ I −→ N ∧
x ∈ ran(gp) ∧ ran(gp) = ran(I � g) ∧
∀z.(z ∈ I ∧ z ≤ k ⇒ gp(z) ≤ x) ∧
∀z.(z ∈ I ∧ z > k ⇒ gp(z) ≥ x)then
g := g ⊳− gp ‖
TS := TS − {I} ∪ {{y|y ∈ I ∧ y ≤ k}, {y|y ∈ I ∧ y > k}}endThe model has two main events; one event splits the intervals as long as thereis at least one interval with two values and an event for ompleting the proess.Duality of Sorting ModelsTwo models re�ne the basi model for the sorting problem; the tuple spaefrees the designer from implementation details and struture the omputationproess. In the �gure 17, we summarize the re�nement relationship betweenthe three models developed in the previous subsetions. Two families of sort-ing tehniques an be redeveloped and we will develop the family of sortingtehniques based on the split paradigm.

split−sort

basic−sorting

merge−sortFig. 17. Sorting developmentWe do not develop, in this paper, sorting algorithms of the merge familyand we restrit our illustration to the split family.



90 Dominique Cansell and Dominique Méry5.4 Introduing a Pivot and an IndexThe quiksort splits arrays by hoosing a pivot variable and it reorganizes bothintervals suh that any value of the �rst interval is smaller than any value ofthe seond interval. The next re�nement de�nes a pivot (piv) and a onreteindex (k), whih allows to split the urrent interval (I). Two index variables,namely (binf) and bsup), de�ne the middle part of an interval. The middlepart is not proessed by the partitioning proess. The partitioning algorithmis not used in our urrent proess, sine it an split the urrent interval inthree parts. The ontrol of binf and bsup is fundamental: the inreasing ofbinf and the dereasing of bsup. The new invariant is enrihed by statementson properties satis�ed by the new variables, namely piv,k, binf and bsup. Thevariable ToSplit detets what is the phase of the partitioning proess; it anontain three values: No, when no split phase is running; Yes if the partitioningproess is progressing, End when the partitioning proess for a given intervalis ompleted.The resulting invariant expresses intuitive properties over variables; theproof assistant generates proof obligations for validating the re�nement andhelps us to add details over variables that were missing. When developingabstrat models, a proof assistant like Atelier B is ruial and it avoids errorsin brain-aided proofs. The proof helps us to hoose the orret index (k) topartition the resulting interval, when the splitting proess stops (ToSplit =
End). Expliations are neessary to read and to understand the invariant.The �rst part expresses typing information. I is the urrent interval, whihsatis�es properties resulting from the guard of hoie_interval event.

ToSplit ∈ {No, Y es, End} ∧ I ⊆ 1..m ∧ piv ∈ N ∧ binf ∈ 1..m ∧
bsup ∈ 1..m ∧ k ∈ N ∧
(ToSplit 6= No ⇒ piv ∈ ran(I � g)) ∧
(ToSplit 6= No ⇒ I ∈ TS) ∧
(ToSplit 6= No ⇒ I − max(I) 6= ∅) ∧
(ToSplit = Y es ⇒ binf ∈ I) ∧
(ToSplit = Y es ⇒ bsup ∈ I) ∧The splitting of the urrent interval in two intervals is made possible by on-troling the two variables binf and bsup. binf may inrease and bsup may de-rease: left_partition an inrease binf and right_partition an derease binf.Both events are possibly ouring when binf < bsup and are omplementarywith respet to guards. The swap event is enabled, when both left_partitionand right_partition are no more enabled and when the two bounds are stillsatisfying the relationship binf < bsup. In this ase, we must deide the newbound k whih must split the interval in two non-empty intervals:

(ToSplit = End ⇒ k ∈ I − {max(I)})



The event-B Modelling Method 91If one hooses binf −1 or bsup, these values must be di�erent to the initialvalue of the greater bound. So, if this greater bound does not hange, the otherbound must be less and the pivot is still in the �rst part.
(ToSplit = Y es ∧ binf = min(I) ⇒

piv /∈ ran(bsup + 1..max(I) � g)) ∧
(ToSplit = Y es ∧ bsup = max(I) ⇒ binf < bsup) ∧
(ToSplit = Y es ∧ bsup = max(I) ⇒

piv /∈ ran(min(I)..binf − 1 � g)) ∧
(ToSplit = Y es ∧ bsup = max(I) ⇒ piv ∈ ran(I − {max(I)} � g)) ∧
(ToSplit = Y es ⇒ ∀z · ( z ∈ min(I)..binf − 1 ⇒ g(z) ≤ piv)) ∧
(ToSplit = Y es ⇒ ∀z · ( z ∈ (bsup + 1)..max(I) ⇒ g(z) ≥ piv)) ∧
(ToSplit = Y es ∧ bsup < binf ⇒ binf ≤ max(I)) ∧
(ToSplit = Y es ∧ bsup ≤ binf ⇒ (binf = bsup ∨ binf = bsup + 1)) ∧
(binf = bsup ⇒ bsup < max(I)) ∧
(ToSplit = End ⇒ k ∈ I − {max(I)}) ∧
(ToSplit = End ⇒ ∀z · ( z ∈ min(I)..k ⇒ g(z) ≤ piv)) ∧
(ToSplit = End ⇒ ∀z · ( z ∈ k + 1..max(I) ⇒ g(z) ≥ piv))Safety properties an be proved from the invariant and are stated in thelause ASSERTIONS of the B mahine. These properties are useful to validatethe system itself:

(ToSplit = Y es ⇒ I − max(I) = min(I)..max(I) − 1) ∧
(ToSplit = Y es ⇒ min(I)..max(I) ⊆ I) ∧
(ToSplit = Y es ⇒ binf..bsup ⊆ I))The invariant is proved to be satis�ed by the re�ned events and we list there�ned events; the �rst one is the initialisation event alled Init. The tuplespae ontains only one interval, namely 1..m and the splitting proess is notrunning at the initialisation state.Init =begin

g := f ‖ TS := {1..m} ‖ I := ∅ ‖ ToSplit := No ‖
piv :∈ N ‖binf :∈ 1..m ‖ bsup :∈ 1..m ‖ k :∈ 1..mendThe event sorting does not hange; the guard of split_progress is verysimple. When the partition proess is �nished (ToSplit = End), k is theindex result for the partition (see event partition)



92 Dominique Cansell and Dominique Mérysplit_progress =when
ToSplit = Endthen
ToSplit := Y es ‖
TS := TS − {I} ∪ {{y|y ∈ I ∧ y ≤ k}, {y|y ∈ I ∧ y > k}}end ;We introdue �ve new events. The �rst one, namely hoie_interval, hoosesan interval (not a singleton) in the tuple spae and initializes both index andthe pivot. After the ativation of this event, we an ut the urrent interval(ToSplit = Y es).hoie_interval =any J, PIV where

ToSplit = No ∧ J ∈ TS ∧
PIV ∈ ran((J − max(J)) � g) ∧ min(J) < max(J)then
ToSplit := Y es ‖I := J ‖
piv := PIV ‖binf := min(J) ‖bsup := max(J)end ;The three next events move the index to leave element less than pivot beforebinf and greater than pivot after bsup.left_partition =when

ToSplit = Y es ∧
binf < bsup ∧
g(binf) < pivthen
binf := binf + 1end ;

right_partition =when
ToSplit = Y es ∧
binf < bsup ∧
g(binf) ≥ piv ∧
g(bsup) > pivthen
bsup := bsup − 1end ;swap =when

ToSplit = Y es ∧ binf < bsup ∧
g(binf) ≥ piv ∧ g(bsup) ≤ pivthen
binf, bsup := binf + 1, bsup− 1‖
g := g ⊳− {binf 7→ g(bsup)} ⊳− {bsup 7→ g(binf)}end ;



The event-B Modelling Method 93The last one stops the partitioning proess and de�nes the index k, whihmakes progress possible (see event split_progress).partition =when
ToSplit = Y es ∧ binf ≥ bsupthen
ToSplit := End ‖if binf = bsup thenif g(binf) ≤ piv then

k := binfelse
k := binf − 1endelse

k := bsupendend ;5.5 A Set of Bounds and a Conrete PivotThe goal of the next re�nement is to implement the tuple spae by a setof initial bounds from every interval in the abstrat tuple spae. Initially, wehave tried to introdue this implementation in the �rst re�nement but it leadsus to a unique proof obligation, whose proof was very long. Hene, we havefound another abstration, whih produes more proof obligations than theinitial hoie but they were easier to prove.The implementation of the pivot is the middle of the hosen interval andnow, the hoie is deterministi. The relationship between pairs of boundsof the new tuple spae (TB) and the tuple spae (TS) is stated by a gluinginvariant and the relationship is a one to one relation:
TB ⊆ 1..m + 1 ∧

∀ (a, b) ·





(

a ∈ TB ∧ b ∈ TB ∧
a < b ∧ a + 1..b − 1 ∩ TB = ∅

)

⇒ a..b − 1 ∈ TS



We add two new variables, namely A and B, whih are the bounds of theurrent abstrat interval I and they satisfy the following gluing invariant:
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ToSplit = Y es ⇒





A ∈ TB ∧ B ∈ TB ∧
A < B ∧ A + 1..B − 1 ∩ TB = ∅ ∧
A..B − 1 = I



 ∧

ToSplit = End ⇒





A ∈ TB ∧ B ∈ TB ∧
A < B ∧ A + 1..B − 1 ∩ TB = ∅ ∧
A..B − 1 = I



Two new safety properties are derived from the urrent invariant:
∀I · ( I ∈ TS ⇒ min(I) ∈ TB ∧ max(I) + 1 ∈ TB);

∀ (a, b, c) ·

















a ∈ TB ∧ b ∈ TB ∧ c ∈ TB ∧
a < b ∧ b < c ∧
a + 1..b − 1 ∩ TB = ∅ ∧
b + 1..c − 1 ∩ TB = ∅

⇒
∀ (x, y) · (x ∈ a..b − 1 ∧ y ∈ b..c − 1 ⇒ g(x) ≤ g(y)))















We re�ne only two events. The event split_progress adds the unique value
k + 1 in the onrete tuple spae (TB).split_progress =when ToSplit = End then

ToSplit := No ‖
TB := TB ∪ {k + 1}end ;The event choice_interval initializes the onrete bounds A and B of theabstrat interval I. It hooses the pivot as the value g((a + b − 1)/2) at themiddle of the hosen interval.hoie_interval =any a, b, p where

ToSplit = No ∧ a ∈ TB ∧ b ∈ TB ∧
a < b − 1 ∧
a + 1..b − 1 ∩ TB = ∅ ∧
p = g((a + b − 1)/2)then
ToSplit := Y es ‖ A := a ‖ B := b ‖
piv := p ‖ binf := a ‖ bsup := b − 1end ;5.6 Implementation of the Tuple Spae by a StakThe next step plans to use a stak for implementing the tuple spae; it islear that the urrent abstrat model might be diretly implemented in a



The event-B Modelling Method 95oordination language as C LINDA for instane. However, we reall that theoordination paradigm is a methodologial support for the development.In this re�nement, we implement the tuple spae by a stak. We use threenew variables TA, top, S, whih stands for the old variables TB. S (Single)ontains all bounds interval whih are singletons and whih were on the topof the stak TA. All bounds in TB are single one (∈ S) or in the odomain ofTA and vie-versa, aording to our gluing invariant. Two onseutive boundsin TB are given by two onseutive index of the stak (array). The onretetuple spae TA is sorted. top is the dimension of TA. Notie that top is alwaysbetween 1 and m + 1. No stak over�ow an our.
top ∈ 1..m + 1 ∧
TA ∈ 1..top → 1..m + 1 ∧
S ⊆ TB ∧
TB = ran(TA) ∪ S ∧

∀(i, j) ·













i ∈ dom(TA) ∧
j ∈ dom(TA) ∧
i < j ∧

⇒
TA(i) < TA(j))











When S is empty, the greater bound in the odomain of TA is m + 1 and,when S is not empty, it ontains onseutive index from m+1 and the greaterbound in the odomain of TA and the minimum of S are onseutive. Usingthis tehnial invariant, it is easier to prove the previous gluing invariant.
(S = ∅ ⇒ max(ran(TA)) = m + 1) ∧
(S 6= ∅ ⇒ S = min(S)..m + 1) ∧
(S 6= ∅ ⇒ max(ran(TA)) + 1 = min(S)) ∧The following properties are proved from the invariant.
(ToSplit 6= No ⇒ (top 7→ B) ∈ TA) ∧
(ToSplit 6= No ⇒ (top − 1 7→ A) ∈ TA) ∧
(ToSplit 6= No ⇒ top > 1) ∧
(ToSplit 6= No ⇒ top ≤ m)
TA : 1..top  1..m + 1 ∧
max(ran(TA)) = TA(top) ∧
ran(TA) ∩ S = ∅ ∧
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∀(h, n) ·





























n : 1..m + 1 ∧
h : 1..n  1..n ∧

∀(x, y) ·













x ∈ 1..n ∧
y ∈ 1..n ∧
x < y ∧

⇒
h(x) < h(y))













⇒
h = id(1..n)



























The last one is very important in proving that there is no run stak over�owon our stak. It expresses that the unique inreasing into funtion between
1..m+1 and 1..m+1 is the identity. We have proved it in another B mahinewith other preliminary lemmas like previous assertions. The initial event iswritten from the previous one.Init =begin

g := f ‖TA := {1 7→ 1, 2 7→ m + 1} ‖S := ∅ ‖top := 2 ‖
ToSplit := No ‖A, B := m + 1, 1 ‖piv :∈ N ‖
binf :∈ 1..m ‖bsup :∈ 1..m ‖k :∈ 1..mendOnly three old events hange. Now, the guard of sorting is top = 1: re-member that the proof of the re�nement assumes that in this ase all intervalsare singleton. The implementation is very lose.sorting =when top = 1 thenskipend ;split_progress =when ToSplit = End then
ToSplit := No ‖
top := top + 1 ‖
TA := (TA ⊳− {top 7→ k + 1}) ⊳− {top + 1 7→ B}end ;The event whih hooses the interval is now ompletely deterministi. Thebounds of the hosen interval are on the top of the stak TA. Notie, that thehosen interval is not a singleton (TA(top − 1) + 1 6= TA(top). Singleton onthe top of the stak is removed by a new event as follows:



The event-B Modelling Method 97hoie_interval =when
top > 1 ∧
(TA(top − 1) + 1/ = TA(top)) ∧
ToSplit = Nothen
ToSplit := Y es ‖

A, B, piv, binf, bsup : |













A = TA(top − 1) ∧
B = TA(top) ∧
piv = g((A + B − 1)/2) ∧
binf = A ∧
bsup = B − 1











end ;New event, so-alled elim_single, eliminates every singleton on the top ofthe stak. elim_single =when
top > 1 ∧
TA(top − 1) + 1 = TA(top) ∧
ToSplit = Nothen
S := S ∪ {TA(top)} ‖
top := top − 1 ‖
TA := 1..top − 1 � TAend ;All guards of the previous system are very simple to implement and allevents are deterministi. We an easily derive from this system an iterativeprogram using array and loops. The set of singleton S is not important in thisimplementation. If somebody wants to use it, one an store it in TA from theindex m in a dereasing way. The iterative version of the algorithm is givenin the �gure 18.5.7 ConlusionThe iterative algorithm is three times faster that the quiksort; it is obtainedby ombining the oordination paradigm and the event-driven paradigm. Ev-ery abstrat model an be implemented by a oordination program but weuse the oordination paradigm as a omputation model and the re�nementallows us to transit from the oordination model to the lassial sequentialmodel. Moreover, it provides us a way to develop a split algorithm withoutuse of reursive aspet. The experiene shows that oordination gives a sim-ple way to think on the ativity of events and it helps in explaining what is
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g := f ; TA[1] := 1; TA[2] := m + 1; top := 2;
/ ⋆ ToSplit = No ⋆ /while top 6= 1 dowhile top > 1 ∧ TA[top − 1] + 1 = TA[top] do

top := top − 1od ;if top > 1 then
A := TA[top − 1];
B := TA[top];
binf := A;
bsup := B − 1;
piv := g[(binf + bsup)div2];
/ ⋆ ToSplit = Y es ⋆ /while (binf < bsup) dowhile binf < bsup ∧ g[binf ] < piv do

binf := binf + 1od ;while binf < bsup ∧ g[bsup] > piv do
bsup := bsup − 1od ;if binf < bsup then
temp := g[binf ];
g[binf ] := g[bsup];
g[bsup] := temp;
binf := binf + 1;
bsup := bsup − 1endod ;if binf = bsup thenif g[binf ] ≤ piv then
k := binfelse
k := binf − 1endelse

k := bsupend ;
/ ⋆ ToSplit = End ⋆ /
TA[top] := k + 1; top := top + 1; TA[top] := B
/ ⋆ ToSplit = No ⋆ /endodend Fig. 18. A orret iterative program



The event-B Modelling Method 99really happening, when, for instane, a paradigm is applied for sorting. Wehave not ompletely explored the promise land of oordination and we havenot ompared our works to re�nements for oordination.6 Spanning Trees Algorithms6.1 IntrodutionGraphs algorithms and graph-theoretial problems provide a hallenging bat-tle �eld for the inremental development of proved models. The B event-basedapproah implements the inremental and proved development of abstratmodels whih are translated into algorithms; we fous our methodology onthe minimum spanning tree problem and on Prim's algorithm. The orret-ness of the resulting solution is based on properties over trees and we showhow the greedy strategy is e�ient in this ase. We ompare properties provenmehanially to the properties found in a lassial algorithms textbook. Thissetion analyses the proof-based development of Minimal Spanning Tree al-gorithms and Prim's algorithm in partiular [94℄ is produed in �ne.6.2 The Minimum Spanning Tree ProblemThe Minimum Spanning Tree Problem, Minimal Spanning Tree problem forshort, is the problem of �nding a minimum spanning tree with respet toa onneted graph. The literature ontains several algorithmi solutions likePrim's algorithm [94℄ or Kruskal's algorithm [72℄. Both algorithms implementthe greedy method. Typially, we assume that a ost funtion is related toevery edge and the problem is to infer a globally minimum spanning tree,whih overs the initial graph. The ost funtion returns integer values. TheMinimal Spanning Tree problem is strongly related to pratial problems likethe optimisation of iruitry and the greedy strategy advoates making thehoie that is the best one at the moment; It does not always guarantee theoptimality but ertain greedy strategies yield a Minimal Spanning Tree.Prim's algorithm is easy to explain but it underlies mathematial proper-ties related to the graph theory and espeially the general theory of trees. Weonsider two kinds of solutions; a �rst one is alled generi algorithm beauseit does not use a ost funtion. This �rst generi solution allows us to developa seond solution: the Minimal Spanning Tree one.Let us summarize how Prim's algorithm works. The state of the algorithmwhile exeuting ontains two sets of nodes of the urrent graphs. A �rst set ofnodes, equipped with a restrition of the relation over the global set of nodes,de�nes the urrent spanning tree starting from a speial node alled the rootof the spanning tree. A seond set of nodes is the omplement of the �rst set.The ayliity of the spanning tree must be preserved, while adding a newedge in the urrent spanning tree and the basi omputation step onsists



100 Dominique Cansell and Dominique Méryof taking an edge between a node in the urrent spanning tree and a nodewhih is in the other set. The hoie leads to maintaining the ayliity of theurrent spanning tree with the new node, sine both sets of nodes are disjoint.The proess is repeated as long as the set of remaining and unhosen nodesis empty. The �nal omputed tree is a spanning tree omputed by the generialgorithm. Now, if one adds the ost funtion, one gets Prim's algorithm bymodifying the hoie of the new node and edge to add to the urrent spanningtree. In fat, the minimum edge is hosen and the �nal spanning tree is thenthe minimum spanning tree. However, the addition of the ost funtion is are�nement of the generi solution.The generi Minimal Spanning Tree algorithm without ost funtion isskethed as follows:
• Preondition: A undireted onneted graph, g, over a set of nodes NDand a node r
• Initial Step tr_nodes (the urrent set of nodes) ontains only r and isinluded into ND and tr (the urrent set of edges) is empty
• Computation Step If ND − tr_nodes is not empty, then hoose a node xin tr_nodes and a node y in ND − tr_nodes suh that the link (x, y) isin g with the minimum ost and add it to tr; then add y to tr_nodes and

(x, y) to tr
• Termination Step If ND − tr_nodes is empty (ND = tr_nodes), then tris a minimum spanning tree on ND
• Postondition (ND, tr) is a minimum spanning treeThe termination of the algorithm is ensured by dereasing the set ND −
tr_nodes. The generiity of the solution leads us to the re�nement by in-troduing the ost funtion in the omputation step. We have a lear simpleabstrat view of the problem and of the solution. We an, in fat, state theproblem in the B event-based framework. It remains to prove the optimal-ity of the resulting spanning tree and that will be derived using tools andmodels. Before starting the modelling, we reall the B-event-based modellingtehnique.6.3 Development of a Spanning Tree AlgorithmFormal Spei�ation of the Spanning Tree ProblemFirst we de�ne elements of the urrent graph namely g over the set of nodesnamely ND. The graph is assumed to be undireted, whih is modeled by thesymmetry of the relation of the graph. Node r is the root of the resulting treeand we obtain the following B de�nitions:

g ⊆ ND × ND ∧
g = g−1 ∧
r ∈ ND



The event-B Modelling Method 101The termination of the algorithm is learly related to properties of theurrent graph; the existene of the spanning tree is based on the onnetivityof the graph. The modelling of a tree uses the ayliity of the graph. A treeis de�ned by a root r, a node: r ∈ ND, and a parent funtion t (eah nodehas an unique parent node, but the root): t ∈ ND − {r} −→ ND. Atree is an ayli graph. A yle c in a �nite graph t built on a set ND, is asubset of ND whose elements are members of the inverse image of c under
t, formally c ⊆ t−1[c]. To ful�ll the requirement of ayliity, the only set cthat enjoys this property is neessarily the empty set. We formalize it by theleft prediate that follows, whih an be proved to be equivalent to the oneon the right, whih an be used as an indution rule:

∀c · (
c ⊆ ND ∧
c ⊆ t−1 [c]

⇒
c = ∅ )

⇔

∀q · (
q ⊆ ND ∧
r ∈ q ∧
t−1 [q] ⊆ q

⇒
ND = q )We prove the equivalene using Atelier B. We an now de�ne a spanningtree (rooted by r and with the parent funtion t) of a graph g as one whoseparent funtion is inluded in g, formally:

spanning (t, g) =




t ∈ ND − {r} −→ ND ∧
∀q · ( q ⊆ ND ∧ r ∈ q ∧ t−1 [q] ⊆ q ⇒ ND = q ) ∧
t ⊆ g



Now we an de�ne the set tree (g) of all spanning trees (with root r) of thegraph g, formally:
tree (g) = {t|spanning (t, g)}We de�ne the property of being a onneted graph by connected(g):

connected (g) =
(

g ∈ ND ↔ ND ∧
∀S · (S ⊆ ND ∧ r ∈ S ∧ g [S] ⊆ S ⇒ ND = S )

)The graph g and the node r are two global onstants of our problem andmust satisfy properties stated above. Moreover, we assert that there is at leastone solution to our problem. The optimality of the solution will be analyzedlater, while introduing the ost funtion. Now, we build the �rst model whihomputes the solution in one shot. The event span orresponds to produing aspanning tree among the non-empty set of possible spanning trees for g. Thevariable st ontains the resulting spanning tree.
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st :∈ tree(g)end

st ∈ ND ↔ ND

The invariant is very simple and isonly a type invariant; the initial-ization establishes the invariant.The urrent model is in fat the spei�ation of the simple spanning treeproblem; we have not yet mentioned the ost funtion. The next step is tore�ne the urrent model into a simple spanning tree algorithm.Development of a Simple Spanning Tree AlgorithmThe seond model introdues a new event whih gradually omputes the span-ning tree by onstruting the spanning tree in a progressive way. The newevent adds a new edge to the urrent tree tr whih partly spans g. The ho-sen edge is suh that the �rst omponent of the pair is in tr_nodes and theseond one is in remaining_nodes. These two new variables partition the setof nodes and we obtain the following new properties to add to the invariantof the urrent model.
tr_nodes ⊆ ND ∧
remaining_nodes ⊆ ND ∧
tr_nodes ∪ remaining_nodes = ND ∧
tr_nodes ∩ remaining_nodes = ∅A new event, progress, simulates the omputation step of the urrent so-lution by hoosing a pair maintaining the updated invariant.progress =selet
remaining_nodes 6= ∅thenany x, y where

x, y ∈ g ∧ x, y ∈ tr_nodes × remaining_nodesthen
tr := tr ∪ {y 7→ x} ||
tr_nodes := tr_nodes ∪ {y} ||
remaining_nodes := remaining_nodes − {y}endend



The event-B Modelling Method 103The event span is simply re�ned by modifying the guard of the previousinstane of the event in the abstrat model. The event is triggered when theset of remaining nodes is empty: the variable st ontains a spanning tree forthe graph g. span =selet
remaining_nodes = ∅then
st := trendThe invariant of the new model states the properties of the two new vari-ables and relates them to previous ones.

tr_nodes ⊆ ND ∧
remaining_nodes ⊆ ND ∧
tr_nodes ∪ remaining_nodes = ND ∧
tr_nodes ∩ remaining_nodes = ∅ ∧
tr ∈ tr_nodes − {r} −→ tr_nodes ∧
∀q · ( q ⊆ tr_nodes ∧ r ∈ q ∧ tr−1 [q] ⊆ q ⇒ tr_nodes = q )The following initialization establishes the invariant:

tr := ∅ ||
tr_nodes := {r} ||
remaining_nodes := ND − {r}The expression of the absene of deadlok is simply stated as follows:

remaining_nodes = ∅ ∨
remaining_nodes 6= ∅ ∧

∃(x, y).

(

x, y ∈ g ∧
x, y ∈ tr_nodes × remaining_nodes

)We have obtained a simple iterative solution for the simple Minimal Span-ning Tree problem; the solution follows the sketh of the algorithm given inthe subsetion desribing the so alled generi algorithm in the book of Cor-men et al. [55℄. We an derive the algorithm of the �gure 19 from the urrentmodel:The next step re�nes the urrent model into a model where the ost fun-tion is e�etively used.



104 Dominique Cansell and Dominique Méryalgorithm generic_MSTbegin tr := ∅;
tr_nodes = {r};while remaining_nodes 6= ∅ dolet x, y where

x, y ∈ g ∧ x, y ∈ tr_nodes × remaining_nodesthen
tr := tr ∪ {y 7→ x};
tr_nodes := tr_nodes ∪ {y};
remaining_nodes := remaining_nodes − {y}endend_while

st := tr endFig. 19. Derived MST algorithmA Proof View of the Spanning Tree AlgorithmThe previous model omputes a spanning tree, when the graph is onneted.This algorithm looks like a proof of existene of a spanning tree; the followinglemma allows us to prove that the set of spanning trees is not empty andhene a minimum spanning tree exists:Theorem 3. (Existene of a spanning tree)
connected (g) ⇒ tree (g) 6= ∅However, the previous lemma requires to onstrut a tree from the hy-pothesis related to the onnetivity of the graph. Hene, we must prove a �rstindutive theorem on �nite sets, whih will inlude the existene of a tree.We suppose that the set ND is �nite and there exists a funtion from ND to

1..n, where n is the ardinality of ND.Theorem 4. (An indutive theorem on �nite sets)
∀P · (

P ⊆ P(ND) ∧
∅ ∈ P ∧
∀A · (A ∈ P ∧ A 6= ND ⇒ ∃a · ( a ∈ ND − A ∧ A ∪ {a} ∈ P ))

⇒
ND ∈ P )We an use the previous lemma with the following set:
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{A|A ⊆ ND ∧ ∃f ·













f ∈ A − {r} −→ A ∧
f ⊆ g ∧

∀S ·





S ⊆ ND ∧ r ∈ S ∧ f−1[S] ⊆ S
⇒
A ⊆ S

















}to prove that the set of spanning trees of g is not empty.6.4 Development of Prim's AlgorithmThe ost funtion is de�ned on the set of edges and is extended over the globalset of possible pairs of nodes.
cost : g −→ Z ∧
∀(x, y) · (x, y ∈ g ⇒ cost(x 7→ y) = cost(y 7→ x)) ∧
Cost : P(g) −→ Z ∧
Cost({}) = 0 ∧

∀(s, x, y) ·





s ∈ P(g) ∧ x, y ∈ g − s
⇒
Cost(s ∪ {x 7→ y}) = Cost(s) + cost(x 7→ y)



We have proved that tree(g) is not empty, sine the graph g is onneted;the mst_set(g) ontaining every minimum spanning tree of the graph g isde�ned as follows:
mst_set(g) =
{mst|mst ∈ tree(g) ∧ ∀tr · (tr ∈ tree(g) ⇒ Cost(mst) ≤ Cost(tr))}The set mst_set(g) is learly not empty. The �rst �one shot� model isre�ned into the new model whih ontains only one event span. We strengthenthe de�nition of the hoie of the resulting tree by strengthening the ondi-tion over the set and by hoosing a andidate in the set of possible MinimalSpanning Tree trees. span =begin

st :∈ mst_set(g)endThe seond model gradually omputes the spanning tree by adding a newedge to the urrent �under onstrution� tree tr spanning a part of g. The tree
tr is de�ned over the set of already treated nodes, alled tr_nodes. The eventprogress is modi�ed to handle the minimality riterion: the guard is modi�edto integrate the hoie of the minimum edge among the remaining possibleones.
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remaining_nodes 6= ∅thenany x, y where

x, y ∈ g ∧ x, y ∈ tr_nodes × remaining_nodes ∧
∀(a, b) · (a ∈ tr_nodes ∧

b ∈ remaining_nodes ∧
a, b ∈ g

⇒
cost(y 7→ x) ≤ cost(b 7→ a))then

tr := tr ∪ {y 7→ x} ||
tr_nodes := tr_nodes ∪ {y} ||
remaining_nodes := remaining_nodes − {y}endendThe event span remains unhanged:span =selet

remaining_nodes = ∅then
st := trendThe invariant inludes the invariant of the re�ned model of the generire�nement and we add that the urrent spanning tree tr is a part of a minimumspanning tree of the graph g:

∃T · (T ∈ mst_set(g) ∧ tr ⊆ T )The invariant implies that after ompletion, when the event span ours,the urrent spanning tree tr is �nally a minimal one. Sine tree(g) is not empty,then mst_set(g) is not empty and a tree an be hosen in this non-empty setto prove that a Minimal Spanning Tree exists (this Minimal Spanning Treeontains ∅). So the invariant holds for the initialization, using the lemma 1.The di�ult task is to prove that the event progress maintains the invariant.We an take the minimum spanning tree given by the invariant, if y 7→ x is inthis tree. Or else we must provide another minimum tree whih inludes theurrent one and the new edge y 7→ x.In fat, textbooks provide algorithms implementing the greedy strategyand we refer our explanations to the book of Cormen et al. [55℄. The authors



The event-B Modelling Method 107prove a theorem page 501 numbered 24.1 to assert that the hoie of the twoedges is done following a given requirement, namely a safe edge (a safe edgeis a edge allowing the progress of the algorithm). We reall the theorem:Theorem 5. (24.1, p 501 from [55℄)Let g be a onneted, undireted graph on ND (set of nodes) with a real-valued weight funtion cost de�ned on g (edges). Let tr be a subset of gthat is inluded in some minimum spanning tree for g, let (tr_nodes, ND −
tr_nodes) be any ut of g that respets tr_nodes, and let (x, y) be a light edgerossing (tr_nodes, ND − tr_nodes). Then edge (x, y) is safe for tr_nodes.Let us explain notions of ut, rosses and light edge. A ut
(tr_nodes, ND − tr_nodes)) of an undireted graph g is a partition of ND.An edge (x, y) rosses the ut (tr_nodes, ND − tr_nodes) if one of its end-points is in tr_nodes and the other is in ND − tr_nodes. An edge is a lightedge rossing a ut if its weight is the minimum of any edge rossing the ut.A light edge is not unique.Proof: Let T be a minimum spanning tree that inludes tr, and assume that
T does not ontain the light edge (x, y), sine if it does, we are done. We shallonstrut another minimum spanning tree T ′ that inludes tr ∪ {(x, y)} byusing a ut-and-paste tehnique, thereby showing that (x, y) is a safe edge for
tr. The edge (x, y) forms a yle with the edges on the path p from x to y in
T . Sine x and y are on opposite sides of the ut (tr_nodes, ND−tr_nodes),there is at least one edge in T on the path p that also rosses the ut. Let (a, b)be any suh edge. The edge (a, b) is not in tr, beause the ut respets tr. Sine(a,b) is on the unique path from x to y in T , removing (a, b) breaks T intotwo omponents. Adding (x, y) reonnets them to form a new spanning tree
T ′ = T − {(a, b)} ∪ {(x, y)}. We next show that T ′ is a minimum spanningtree. Sine (x, y) is a light edge rossing (tr_nodes, ND−tr_nodes) and (a, b)also rosses this ut, cost(x, y) ≤ cost(a, b). Therefore,

Cost(T ′) = Cost(T ) − cost(a, b) + cost(x, y)
≤ Cost(T )But T is a minimum spanning tree, so that Cost(T ) ≤ Cost(T ′); thus,

T ′ must be a minimum spanning tree also. It remains to show that (x, y) isatually a safe edge for tr. We have tr ⊆ T ′, sine tr ⊆ T and (a, b) /∈ tr ;thus, tr ∪ {(x, y)} ⊆ T ′. Consequently, sine T ′ is a minimum spanning tree,
(x, y) is safe for tr. 2We have to prove the property above that has been in fat adapted intothe B proof engine. However, it is not a simple exerise of translation buta omplete formulation of graph-theoretial aspets; moreover, the proof hasbeen ompletely mehanized, as we will show in the next subsetion. Letus ompare the theorem and our formulation. The pair (tr_nodes, ND −
tr_nodes) is a ut in the left part of the impliation; the restrition of thetree f to the set of nodes tr_nodes is a tree rooted by r; (x, y) rosses the



108 Dominique Cansell and Dominique Méryut. Those assumptions imply that there exists a spanning tree sp rooted by
r that is minimum on tr_nodes and suh that there exists a light ut (a, b)preserving the minimality property. Hene, we express formally the propertyand it is proved separately:

∀(T, tr_nodes, x, y) · (
tr_nodes ⊆ ND ∧ y ∈ ND ∧ atree(r, ND, T )
r ∈ tr_nodes ∧ x ∈ tr_nodes ∧ (y /∈ tr_nodes) ∧
atree(r, tr_nodes, (tr_nodes − {r} � T � tr_nodes)) ∧
∀S · (S ⊆ ND ∧ y ∈ S ∧ T [S] ⊆ S ⇒ S ∩ tr_nodes 6= ∅)

⇒
∃(a, b, T ′) · (

a, b ∈ T ∧ a /∈ tr_nodes ∧ b ∈ tr_nodes ∧
atree(r, ND, T ′) ∧
T ′ ⊆ (T ∪ T−1 − {b 7→ a, a 7→ b}) ∪ {y 7→ x} ∧
Cost(T ′) = Cost(T ) − cost(b 7→ a) + cost(y 7→ x) ∧
y 7→ x ∈ T ′ ∧
(tr_nodes − {r} � T � tr_nodes) ⊆ T ′))We have introdued a prediate atree(root, nodes, tree) stating that astruture tree is a tree on the set nodes and whose root is root:

atree(root, nodes, tree) =




root ∈ nodes ∧
tree ∈ nodes − {root} −→ nodes ∧
∀q · ( q ⊆ nodes ∧ root ∈ q ∧ tree−1 [q] ⊆ q ⇒ nodes = q )



The property is the key result for ensuring the optimality of the greedystrategy in this proess. In the next subsetion, we detail the proof of ourtheorem.6.5 On the Theory of TreesAs we have mentioned previously, trees play a entral role in the justi�ationof the algorithm; the optimality of the greedy strategy is mainly based on theproof of the theorem used by Cormen et al. [55℄. We should now detail thetheory of trees and intermediate lemmas required for deriving the theorem.Both the development of the tree identi�ation protool IEEE 1394 [12℄ andthe development of reursive funtions [40℄ require proofs related to the losureof relations; we apply the same tehnique for the losure of a funtion de�ninga tree.Let (T, r) be a tree de�ned by a tree funtion T and a root r; they satisfythe following axioms atree(r, ND, T ). The losure cl of T−1 is the smallestrelation ontaining id(ND) and stable by appliation of T−1, that is:
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cl ∈ ND ↔ ND ∧
id(ND) ⊆ cl ∧
(cl; T−1) ⊆ cl ∧
∀r · (

r ∈ ND ↔ ND ∧
id(ND) ⊆ r ∧
(r; T−1) ⊆ r ∧

⇒
cl ⊆ r

)Useful properties on the losure an be derived from those de�nitions; forinstane, the losure is a �x-point; the root r is onneted to every node ofthe onneted omponent; the losure is transitive, et. We summarize thoseproperties using our notations:
cl = id(ND) ∪ (cl; T−1);
r × ND ⊆ cl;
(T−1; cl) ⊆ cl;
(cl; cl) ⊆ cl;
T ∩ cl = ∅;
cl ∩ cl−1 ⊆ id(ND);Theorem 6. (Conatenation of two separate trees)Let T1, r1, N1, T2, r2, N2, x be suh that: 











atree(r1, N1, T1)
atree(r2, N2, T2

N1 ∩ N2 = ∅
N1 ∪ N2 = ND
x ∈ N1Then atree(r1, ND, T1 ∪ T2 ∪ {r2 7→ x}).Proof Sketh: The proof is made up of several steps. A �rst step proves thatthe onatenation is a total funtion over the set N1 ∪N2. A seond one leadsto a more tehnial task and we should prove the indutive property over treesusing a splitting of the indutive variable S ( S ∩ N1 and S ∩ N2). 2Theorem 7. (Subtree property)Let (T, r) be a tree on ND (atree(r, ND, T )) and b a node in ND.Then atree(b, cl[{b}], (cl[{b}]− {b} � T ))Proof Sketh: The main di�ulty is related to the indutive part. We mustprove that, if S ⊆ cl[{b}], b ∈ S and (cl[{b}] − {b} � T )−1[S] ⊆ S, then

cl[{b}] ⊆ S. We use the indutive property on T with the set S ∪ ND −
cl[{b}]. 2



110 Dominique Cansell and Dominique MéryTheorem 8. (Complement of a sub-tree)Let (T, r) be a tree on ND and b a node in ND.Then atree(r, ND − cl[{b}], (cl[{b}] ⊳−T )).Proof Sketh: We should prove that, if S ⊆ ND − cl[{b}], b ∈ S and
(cl[{b}] ⊳−T )−1[S] ⊆ S, then ND − cl[{b}] ⊆ S. A hint is to use theindutive property on T with the set S ∪ cl[{b}]. 2Now, we must haraterize the sub-tree, where we have reversed the edgebetween y to the root b. Let subtree(T, b) be the subtree of T with b as root(it's cl[{b}]− {b} � T ). This following funtion seems to be a good hoie:

(cl−1[{y}] ⊳− subtree(T, b)) ∪ (cl−1[{y}] � subtree(T, b))−1

(cl−1[{y}] � subtree(T, b))−1 is exatly all reverse edges. cl−1[{y}] is theset of all parents of y. 2Theorem 9. (Reverse from y to b produes a tree)Let b, y suh that: { b ∈ ND
y ∈ cl[{b}]Then atree(y, cl[{b}], (cl−1[{y}] ⊳− subtree(T, b)) ∪ (cl−1[{y}]�subtree(T, b))−1)Proof Sketh: In this ase we must use an indution on the tree cl[{b}]and sometimes use an seond indution with the indutive property inhypothesis.2Theorem 10. (Existene of a spanning tree)Let a, b, x, y suh that 


b, a ∈ T
y ∈ cl[{b}]
x : ND − cl[{b}]Then there exists a tree T ′ suh that:























T ′ ⊆ (T ∪ T−1 − {a 7→ b, b 7→ a}) ∪ {y 7→ x}
atree(r, ND, T ′)
Cost(T ′) = Cost(T ) − cost(b 7→ a) + cost(y 7→ x)
y 7→ x ∈ T ′

cl[{b}] ⊳−T ⊆ T ′Proof Sketh: T ′ is obtained by onatenation of . the two trees identi�edin the two previous lemmas. Both trees are linked by the edge y 7→ x. 2Finally, we have to prove the existene of an edge b 7→ a whih is safe inthe sense of the greedy strategy.



The event-B Modelling Method 111Theorem 11. (Existene of b 7→ a)Let tr_nodes, y suh that: 














tr_nodes ⊆ ND
y ∈ ND − tr_nodes
r ∈ tr_nodes

∀S ·





S ⊆ ND ∧ y ∈ S ∧ T [S] ⊆ S
⇒
S ∩ tr_nodes 6= ∅



Then there exists a and b suh that: 






a ∈ tr_nodes
b 7→ a ∈ T
b /∈ tr_nodes
b ∈ cl−1[{y}]

.The property of the existene of a minimum spanning tree an now bederived using lemmas and the proof of the property is then ompletely meh-anized. The development of Prim's algorithm leads us to state and to proveproperties over trees. The indutive de�nition of trees helps in deriving in-termediate lemmas asserting that the growing tree onverges to the MinimalSpanning Tree, aording to the greedy strategy. The resulting algorithm isompletely proved and we an partially reuse urrent developed models to ob-tain Dijkstra's algorithm or Kruskal's one. The greedy strategy is not alwayse�ient and the optimality of the resulting algorithm is proved by the theorem24.1 [55℄. The greedy method is based on optimisation riteria and we havedeveloped a olletion of models [44℄ whih an be used to be instantiated,when the greedy strategy is appliable and when some optimisation riterionis veri�ed.7 Design of Distributed Algorithms by Re�nementDeveloping distributed algorithms an be made simpler and safer by the useof re�nement tehniques. Re�nement allows one to gradually develop a dis-tributed algorithm step by step, and to takle omplex problems like the PCITransation Ordering Problem [38℄ or the IEEE 1394 [12℄. The B event-basedmethod [5℄ provides a framework integrating re�nement for deriving modelssolving distributed problems.The systems under onsideration for our tehnique are general softwaresystems, ontrol systems, protools, sequential and distributed algorithms,operating systems and iruits; these are generally very omplex and haveparts interating with an environment. A disrete abstration of suh systemsonstitutes an adequate framework: suh an abstration is alled a disretemodel. A disrete model is more generally known as a disrete transition sys-tem and provides a view of the urrent system; the development of a model inB follows an inremental proess validated by re�nement. A system is modeledby a sequene of models related by the re�nement and managed in a projet.We limit the sope of our work to distributed algorithms modeled under the



112 Dominique Cansell and Dominique Méryloal omputation rule [48℄ in graphs and we speialize the proof obligationswith respet to the target of the development whih is a distributed algorithm�tting safety and liveness requirements.The goal of the IEEE 1394 protool is to elet in a �nite time a spei�node, alled the leader , in a network made of various nodes linked by someommuniation hannels. One the leader is eleted, eah non-leader node inthe network should have a well de�ned way to ommuniate with it. Thiseletion of the leader has to be done in a distributed and non-deterministiway. The urrent development partially replays the IEEE 1394 protool devel-opment: the resulting algorithm is not the IEEE 1394 protool. In fat, we arepresenting the development of a distributed leader eletion and we partiallyreuse the models of the IEEE 1394 protool development: the �rst, seond andthird models are reused from our paper [12℄ and the ontention is solved byassigning a stati priority to eah site. The resulting algorithm is derived fromthe last B model.7.1 The Basi Mathematial StrutureBefore onsidering details of the protool, we hoose to give a very solid def-inition to the main topology of the network. It is essentially formalized bymeans of a set ND of nodes subjeted to the following assumptions:1. the network is represented by a graph gbuilt on ND,2. the links between the nodes are bidire-tional ,3. a node is not diretly onneted to itself . g ⊆ ND × ND
g = g−1

id(ND) ∩ g = ∅Items 2 and 3 above are formally represented by a symmetri graph whosedomain (and thus o-domain too) orresponds to the entire �nite set of nodes.The symmetry of the graph is due to the representation of the non-orientedgraph by pairs of nodes and the link x − y is represented by the two pairs
x 7→ y and y 7→ x. Item 4 is rendered by saying that the graph is not re�exive.There are two other very important properties of the graph: it is onnetedand ayli. Both these properties are formalized by laiming that the relationbetween eah node and the spanning trees of the graph having that node asa root, that this relation is total and funtional. In other words, eah nodein the graph an be assoiated with one and exatly one tree rooted at thatnode and spanning the graph. We an model a tree by a root r, whih is anode: r ∈ ND, and a parent funtion t (eah node has an unique parent node,exept the root): t ∈ ND − {r} −→ ND. The tree is an ayli graph.A yle c in a �nite graph t built on a set N < D is a subset of ND whoseelements are members of the inverse image of c under t, formally: c ⊆ t−1[c].To ful�l the requirement of ayliity, the only set c that enjoys this propertyis thus the empty set. This an be formalized by the left prediate that follows,



The event-B Modelling Method 113whih an be proved to be equivalent to the one situated on the right, whihan be used as an indution rule:
∀c · ( c ⊆ ND ∧ c ⊆ t−1 [c] ⇒ c = ∅ )

⇔

∀q · ( q ⊆ ND ∧ r ∈ q ∧ t−1 [q] ⊆ q ⇒ ND = q )We prove the equivalene using the tools Atelier B [52℄ and B4free/-Clik'n'Prove [53℄. We an now de�ne a spanning tree (with root r and parentfuntion t) of a graph g as one whose parent funtion is inluded in g, formally:
spanning (r, t, g) =








r ∈ ND ∧
t ∈ ND − {r} −→ ND ∧
∀q · ( q ⊆ ND ∧ r ∈ q ∧ t−1 [q] ⊆ q ⇒ ND = q ) ∧
t ⊆ g







As mentioned above, eah node in the graph an be assoiated with exatlyone tree rooted at that node and whih spans the graph. For this, we de�nethe following total funtion f onneting eah node r of the graph with itsspanning tree f(r):
f ∈ ND → (ND 7→ ND)

∀(r, t) ·









r ∈ ND ∧
t ∈ ND 7→ ND

⇒
t = f(r) ⇔ spanning (r, t, g)







The graph g and the funtion f are thus two global onstants of the prob-lem. Sine g and f are not instantiated, we have not to deal with the size ofnetwork and automati tehniques based on model heking are not helpful forunderstanding how the algorithm is working. The speial issue [54℄ presentsa olletion of veri�ation tehniques using model heking and the size ofthe network is learly a pratial bound. On the ontrary, the veri�ationusing PVS [56℄ and I/O automata is more adequate than model heking,but invariants and proofs remain very di�ult to understand. It is why weadvoate the use of the re�nement whih provides and inremental way toderive both the algorithm and the proof. Moreover, the re�nement allows usto derive a new leader eletion distributed algorithm, whih is not possible inthe veri�ation-oriented approah.



114 Dominique Cansell and Dominique Méry7.2 The First Model leaderelection0: the One-shot EletionFrom the basi mathematial struture developed in previous setion, theessene of the abstrat algorithm implemented by the protool is very simple:it onsists in building gradually (and non-deterministially) one of the span-ning trees of the graph. One this is done, then the root of that tree is theeleted leader and the ommuniation struture between the other nodes andthe leader is obviously the spanning tree itself . The protool, onsidered glob-ally, has thus two variables: (1) the future spanning tree, sp, and (2) the futureleader, ld. The gradual onstrution of the spanning tree simulates indutionsteps.The �rst formal model of the development ontains de�nitions and prop-erties of the two global onstants (the above graph g and funtion f togetherwith their properties), and the de�nition of the two mentioned global vari-ables sp and ld typed in a very loose way: sp is a binary relation built on NDand ld is a node. The dynami aspet of the protool is essentially made ofone event, alled elet, whih laims what the result of the protool is, when itis ompleted . In other words, at this level, there is no protool, just the for-mal de�nition of its intended result, namely a spanning tree sp and its root ld.elet =begin
ld, sp : spanning (ld, sp, g)end As an be seen, the eletion is donein one step. In other words, the span-ning tree appears at one. The anal-ogy of someone losing and openingeyes an be used here to explain theproess of eletion at this very ab-strat level.7.3 Re�ning the First Model leaderelection0In this setion, we present two suessive re�nements of the previous initialmodel. In the �rst one, we give the essene of the distributed algorithm. In theseond re�nement, we introdue some ommuniation mehanisms betweenthe nodes.First Re�nement leaderelection1: Gradual Constrution of aSpanning TreeIn the �rst model leaderelection0, the onstrution of the spanning tree wasperformed in one shot. Of ourse, in a more realisti (onrete) formalization,this is not the ase any more. In fat, the tree is onstruted on a step by stepbasis. For this, a new variable, alled tr, and a new event, alled progress, areintrodued. The variable tr represents a sub-graph of g, it is made of severaltrees (it is thus a forest) whih will gradually onverge to the �nal tree, whihwe intend to build eventually. This onvergene is performed by the event
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leaderelection0SETS
NDCONSTANTS
g, fDEFINITIONSspanning(r, t, g) =
0

B

B

@

r ∈ ND ∧
t ∈ ND − {r} −→ ND ∧
∀q · ( q ⊆ ND ∧ r ∈ q ∧ t−1 [q] ⊆ q ⇒ ND = q ) ∧
t ⊆ g

1

C

C

APROPERTIES
g ⊆ ND × ND ∧ g = g−1 ∧ id(ND) ∩ g = ∅ ∧ f ∈ ND → (ND 7→ ND)

∀(r, t) ·

0

B

B

@

r ∈ ND ∧
t ∈ ND 7→ ND

⇒
t = f(r) ⇔ spanning (r, t, g)

1

C

C

AVARIABLES
ld, tsINVARIANT
ld ∈ ND ∧ sp ∈ ND 7→ NDASSERTIONS
∀x · (x ∈ ND ⇒ f(x) ∩ f(x)−1 = ∅)INITIALISATION
ld :∈ ND ‖ sp :∈ ND 7→ NDEVENTSelet =begin

ld, sp : spanning (ld, sp, g)endENDFig. 20. First model leaderelection0 for the distributed leader eletion algorithmprogress. This event involves two nodes x and y, whih are neighbours in thegraph g. Moreover, x and y are supposed to be both outside the domain of tr.In other words, eah of them has no parent yet in tr. However, the node x isthe parent of all its other neighbours (if any) in g. This last ondition an beformalized by means of the prediate g[{x}] = tr−1[{x}] ∪ {y} sine the setof neighbours of x in g is g[{x}] while the set of sons of x in tr is tr−1[{x}].When these onditions are ful�lled, then the event progress an be enabledand its ation has the e�et of making the node y the parent of x in tr. Theabstrat event elet is now re�ned. Its new version is onerned with a node
x whih happens to be the parent of all its neighbours in g. This ondition



116 Dominique Cansell and Dominique Méryis formalized by the prediate g[{x}] = tr−1[{x}]. When this ondition isful�lled the ation of elet makes x the leader ld and tr the spanning tree sp.Next are the formal representations of these eventsprogress =any x, y where
x, y ∈ g ∧ x /∈ dom(tr) ∧ y /∈ dom(tr)
∧ g[{x}] = tr−1[{x}] ∪ {y}then
tr := tr ∪ {x 7→ y}end

elet =any x where
x ∈ ND ∧
g[{x}] = tr−1[{x}]then
ld, sp := x, trendThe new event progress learly re�nes skip sine it only updates thevariable tr whih is a new variable of this re�nement with no existenein the abstration. Also notie that progress learly dereases the quantity

card(g)− card(tr). The situation is far less lear onerning the re�nement ofevent elet. We have to prove that when its guard is true then tr is indeed aspanning tree of the graph g whose root is preisely x. Formally, this leads toproving the following
∀x · (x ∈ ND ∧ g[{x}] = tr−1[{x}] ⇒ spanning (x, tr, g) )Aording to the de�nition of the onstant funtion f , the previous prop-erty is learly equivalent to

∀x · (x ∈ ND ∧ g[{x}] = tr−1[{x}] ⇒ tr = f(x) )This means that tr and f(x) should have the same domain, namely ND−
{x}, and that for all n in ND − {x}, tr(n) is equal to f(x)(n). This amountsto proving the following:

ND = {x} ∪ {n |n ∈ ND − {x} ∧ f(x)(n) = tr(n) }This is done using the indutive property assoiated with eah spanningtree f(x). Notie that we also need the following invariants:
tr ∈ ND 7→ ND
dom (tr) ⊳ (tr ∪ tr−1) = dom (tr) ⊳ g
tr ∩ tr−1 = ∅This new model, although more onrete than the previous one, is never-theless still an abstration of the real protool: it just explains how the leaderan be eventually eleted by the gradual transformation of the forest tr intoa unique tree spanning the graph g.
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leaderelection1REFINES
leaderelection0VARIABLES
ld, ts, trINVARIANT
tr ∈ ND 7→ ND
dom (tr) ⊳ (tr ∪ tr−1) = dom (tr) ⊳ g
tr ∩ tr−1 = ∅ASSERTIONS
∀x · ( x ∈ ND ∧ g[{x}] = tr−1[{x}] ⇒ tr = f(x) )INITIALISATION
ld :∈ ND ‖ sp :∈ ND 7→ ND ‖ tr := ∅EVENTSprogress =any x, y where

x, y ∈ g ∧ x /∈ dom(tr) ∧ y /∈ dom(tr)
∧ g[{x}] = tr−1[{x}] ∪ {y}then
tr := tr ∪ {x 7→ y}end ;elet =any x where
x ∈ ND ∧
g[{x}] = tr−1[{x}]then
ld, sp := x, trendENDFig. 21. Seond model leaderelection1 for the distributed leader eletion algorithmSeond Re�nement leaderelection2: Introduing CommuniationChannelsIn the previous re�nement, the event progress was still very abstrat: as soonas two nodes x and y with the required properties were deteted, the orre-sponding ation took plae immediately: in other words, y beame the parentof x in one shot. In the real protool things are not so magi: one a node xhas deteted that it is the parent of all its neighbours exept one y, it sends arequest to y in order to ask it to beome its parent. Node y then aknowledgesthis request and �nally node x establishes the parent onnetion with node y.This onnetion, whih is thus established in three distributed steps, is learlyloser to what happens in the real protool. We shall see however in the nextre�nement that what we have just desribed is not yet the �nal word. But



118 Dominique Cansell and Dominique Mérylet us formalized this for the moment. In order to do so, we need to de�neat least two new variables: req, to handle the requests, and ack, to handlethe aknowledgements. req is a partial funtion from ND to itself. When apair x 7→ y belongs to req it means that node x has send a request to node
y asking it to beome its parent: the funtionality of req is due to the fatthat x has only one parent. Clearly, req is also inluded in the graph g. Whennode y sends an aknowledgement to x this is beause y has already reeiveda request from x: ack is thus a partial funtion inluded in req.

req ∈ ND 7→ ND
req ⊆ g
ack ⊆ req
tr ⊆ ack
ack ∩ ack−1 = ∅

Notie that when a pair x 7→ y belongs to ack,it means that y has sent an aknowledgment to
x (learly y an send several aknowledgementssine it might be the parent of several nodes).It is also lear that it is not possible in thisase for the pair y 7→ x to belong to ack.The �nal onnetion between x and y is still represented by the funtion

tr. Thus tr is inluded in ack. All this an be formalized as shown. Twonew events are de�ned in order to manage requests and aknowledgements:send_req, and send_ak. As we shall see, event progress is modi�ed, whereasevent elet is left unhanged. Here are the new events and the re�ned versionof progress:send_req =any x, y where
x, y ∈ g ∧ y, x /∈ ack ∧
x /∈ dom (req) ∧
g[{x}] = tr−1[{x}] ∪ {y}then
req := req ∪ {x 7→ y}end

send_ak =any x, y where
x, y ∈ req ∧
x, y /∈ ack ∧
y /∈ dom (req)then
ack := ack ∪ {x 7→ y}endprogress =any x, y where

x, y ∈ ack ∧
x /∈ dom (tr)then
tr := tr ∪ {x 7→ y}endEvent send_req is enabled when a node x disovers that it is the parentof all its neighbours exept one y: g[{x}] = tr−1[{x}] ∪ {y}. Notie that, asexpeted, this ondition is exatly the one that allowed event progress in theprevious model to be enabled. Moreover x must not have sent already a re-quest to any node: x /∈ dom (req). Finally x must not have already sent anaknowledgement to node y: y, x /∈ ack. When these onditions are ful�lled



The event-B Modelling Method 119then the pair x 7→ y is added to req. Event send_ak is enabled when a node
y reeives a request from node x, moreover y must not have already sent anaknowledgement to node x: x, y ∈ req and x, y /∈ ack. Finally node y mustnot have sent a request to any node: y /∈ dom (req) (we shall see very soonwhat happens when this ondition does not hold). When these onditions areful�lled, node y sends an aknowledgement to node x: the pair x 7→ y is thusadded to ack. Event progress is enabled when a node x reeives an aknowl-edgement from node y: x, y ∈ ack. Moreover node x has not yet establishedany parent onnetion: x /∈ dom (tr). When these onditions are ful�lled theonnetion is established: the pair x 7→ y is added to tr.Events send_req and send_ak learly re�ne skip. Moreover their a-tions inrement the ardinal of req and ack respetively (these ardinals arebounded by that d g). It remains for us to prove that the new version of eventprogress is a orret re�nement of its abstration. The ations being the same,it just remains for us to prove that the onrete guard implies the abstratone. This amounts to proving the following left prediate, whih is added asan invariant:

∀ (x, y) ·





















x, y ∈ ack ∧
x /∈ dom (tr)

⇒
x, y ∈ g ∧
x /∈ dom(tr) ∧
y /∈ dom(tr) ∧
g[{x}] = tr−1[{x}] ∪ {y}





















∀ (x, y) ·





















x, y ∈ req ∧
x, y /∈ ack

⇒
x, y ∈ g ∧
x /∈ dom(tr) ∧
y /∈ dom(tr) ∧
g[{x}] = tr−1[{x}] ∪ {y}



















When trying to prove that the left prediate is maintained by eventsend_ak, we �nd that the right prediate above must also be proved. Itis thus added as a new invariant, whih is, this time, easily proved to bemaintained by all events.The problem of ontention. The guard of the event send_ak above on-tains the ondition y /∈ dom (req). If this ondition does not hold while theother two guarding onditions hold, that is x, y ∈ req and x, y /∈ ack hold,then learly x has sent a request to y and y has sent a request to x: eahone of them wants the other to be its parent! This problem is alled the on-tention problem. In this ase, no aknowledgements should be sent sine then



120 Dominique Cansell and Dominique Méryeah node x and y would be the parent of the other. In the real protoolthe problem is solved by means of timers. As soon as a node y disovers aontention with node x, it waits for very a short delay in order to be ertainthat the other node x has also disovered the problem. The very short delayin question is at least equal to the message transfer time between nodes (suha time is supposed to be bounded). After this, eah node randomly hooses(with probability 1/2) to wait for either a short or a large delay (the di�erenebetween the two is at least twie the message transfer time). After the hosendelay has passed eah node sends a new request to the other if it is in thesituation to do so. Clearly, if both nodes hoose the same delay, the ontentionsituation will reappear. However if they do not hoose the same delay, thenthe one with the largest delay beomes the parent of the other: when it wakesup, it disovers the request from the other while it has not itself already sentits own request, it an therefore send an aknowledgement and thus beomethe parent. Aording to the law of large numbers, the probability for bothnodes to inde�nitely hoose the same delay is null. Thus, at some point, theywill (in probability) hoose di�erent delays and one of them will thus beomethe parent of the other. Rather than to reuse the omplete IEEE 1394 devel-opment [12℄, we reuse a part of the development and develop a new solutionfor solving the ontention problem; the new algorithm was disovered after amisunderstanding of the IEEE 1394 initial solution.When two nodes are in ontention (and at most two nodes an be inontention, it has been proved mehanially and formally), eah node an notsend an aknowlegment to the other node; one of them should not be able tosend this ak and the other one must do it. The main idea is to introdue aunique ounter alled ctr and it means that eah node is uniquely identi�edand must be identi�able. In a real network, one an assume that equipmentsmight be uniquely identi�ed by an unique address, for instane, but it not thegeneral rule. The IEEE 1394 protool does not make any assumption on theidenti�ation of nodes.
ctr ∈ ND  NThe new event is alled solve_nt. Like for send_ak, the ation of thisevent adds the pair x 7→ y to ack.solve_nt =any x, y where

x, y ∈ req − ack ∧ y ∈ dom (req) ∧ ctr(x) < ctr(y)then
ack := ack ∪ {x 7→ y}endThe two di�erenes with the guard of event send_ak onern the ondition

y ∈ dom (req), whih is true in solve_nt and false in send_ak and the guard
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ctr(x) < ctr(y) is added to the event solve_nt. Sine ctr is an injetion, bothnodes x and y an not both trigger this event. The proof of the invariantrequires the following extra invariants:

∀ (x, y) ·









x, y ∈ req − ack ∧
y ∈ dom (req)

⇒
y, x ∈ req









∀ (x, y) ·













x, y ∈ req − ack ∧
y ∈ dom (req) ∧
ctr(x) < ctr(y)

⇒
x, y /∈ ack













∀ (x, y, z) ·













x, y ∈ req ∧
z ∈ g[{x}] ∧
z 6= y

⇒
z, x ∈ tr











The omplete formalization of the ontention solution of the real IEEE 1394 pro-tool (involving the timers and the random hoies) is not addressed neitherin the urrent development, nor in the paper [12℄. Further work on the inte-gration of timers should be done.7.4 Last Re�nements: LoalizationIn the previous re�nement, the guards of the various events were de�ned interms of global onstants or variables suh as g, tr, req, ack. A loser lookat this re�nement shows that these onstants or variables are used in expres-sions of the following shapes: g−1[{x}], tr−1[{x}], ack−1[{x}], dom (req), and
dom (tr). These shapes ditate the kind of data re�nement we now undertake.Fourth, �fth and sixth models progressively introdue loal informations,whih are related to abstrat global values. The models are in the �gures 23,24 and 25; the model leaderelection5 introdues messages ommuniations(TR, REQ, ACK).We delare �ve new variables nb (for neighbours), ch (for hildren), ac (foraknowledged), dr (for domain of req), and dt (for domain of tr). Next are thedelarations of these variables together with their simple de�nitions in termsof the global variables.



122 Dominique Cansell and Dominique MéryREFINEMENT leaderelection2REFINES leaderelection1CONSTANTS
ctrPROPERTIES

ctr ∈ ND  NVARIABLES
ld, ts, tr, req, ackINVARIANT
req ∈ ND 7→ ND
req ⊆ g
ack ⊆ req
tr ⊆ ack
ack ∩ ack−1 = ∅
∀ (x, y)·
0

B

B

B

B

B

B

B

B

@

x, y ∈ ack ∧
x /∈ dom (tr)

⇒
x, y ∈ g ∧
x /∈ dom(tr) ∧
y /∈ dom(tr) ∧
g[{x}] = tr−1[{x}] ∪ {y}

1

C

C

C

C

C

C

C

C

A

∀ (x, y)·
0

B

B

B

B

B

B

B

B

@

x, y ∈ req ∧
x, y /∈ ack

⇒
x, y ∈ g ∧
x /∈ dom(tr) ∧
y /∈ dom(tr) ∧
g[{x}] = tr−1[{x}] ∪ {y}

1

C

C

C

C

C

C

C

C

A

∀ (x, y) ·

0

B

B

@

x, y ∈ req − ack ∧
y ∈ dom (req)

⇒
y, x ∈ req

1

C

C

A

∀ (x, y) ·

0

B

B

B

B

@

x, y ∈ req − ack ∧
y ∈ dom (req) ∧
ctr(x) < ctr(y)

⇒
x, y /∈ ack

1

C

C

C

C

A

∀ (x, y, z) ·

0

B

B

B

B

@

x, y ∈ req ∧
z ∈ g[{x}] ∧
z 6= y

⇒
z, x ∈ tr

1

C

C

C

C

A

ASSERTIONS
id(ND) ∩ ack = ∅
id(ND) ∩ req = ∅
id(ND) ∩ tr = ∅INITIALISATION
ld :∈ ND ‖ tr := ∅ ‖ack := ∅ ‖
sp :∈ ND 7→ ND ‖req := ∅EVENTSsend_req =any x, y where

x, y ∈ g ∧ y, x /∈ ack ∧
x /∈ dom (req) ∧
g[{x}] = tr−1[{x}] ∪ {y}then
req := req ∪ {x 7→ y}end ;send_ak =any x, y where
x, y ∈ req ∧
x, y /∈ ack ∧
y /∈ dom (req)then
ack := ack ∪ {x 7→ y}end ;solve_nt =any x, y where
x, y ∈ req − ack ∧
y ∈ dom (req) ∧
ctr(x) < ctr(y)then
ack := ack ∪ {x 7→ y}end ;progress =any x, y where
x, y ∈ ack ∧ x /∈ dom (tr)then
tr := tr ∪ {x 7→ y}end ;elet =any x where
x ∈ ND ∧
g[{x}] = tr−1[{x}]then
ld, sp := x, trendENDFig. 22. Third model leaderelection2 for the distributed leader eletion algorithm



The event-B Modelling Method 123REFINEMENT
leaderelection3REFINES
leaderelection2CONSTANTS
nbPROPERTIES
nb ∈ ND → P(ND)
∀x · ( x ∈ ND ⇒ nb(x) = g−1[{x}] )VARIABLES
ld, ts, tr, req, ack, chINVARIANT
ch ∈ ND → P(ND)
∀x · ( x ∈ ND ⇒ ch(x) ⊆ tr−1[{x}] )INITIALISATION
ld :∈ ND ‖ch = ND × {∅}
tr := ∅ ‖req := ∅ ‖ack := ∅EVENTSelet =any x where

x ∈ ND ∧
nb(x) = ch(x)then
ld := xendsend_req =any x, y where
x, y ∈ g ∧ y, x /∈ ack ∧
x /∈ dom (req) ∧
nb(x) = ch(x) ∪ {y}then
req := req ∪ {x 7→ y}end ;reeive_nf =any x, y where
x, y ∈ tr ∧
x /∈ ch(y)then
ch(y) := ch(y) ∪ {x}endENDFig. 23. Fourth model leaderelection3 for the distributed leader eletion algorithm



124 Dominique Cansell and Dominique MéryREFINEMENT
leaderelection4REFINES
leaderelection3VARIABLES
ld, ts, tr, req, ack, ch, dr, ac, dtINVARIANT
ac ∈ ND → P(ND)
dr ⊆ ND
dt ⊆ ND
∀x · ( x ∈ ND ⇒ ac(x) = ack−1[{x}] )
dr = dom (req)
dt = dom (tr)INITIALISATION
ld :∈ ND ‖ch = ND × {∅}
tr := ∅ ‖req := ∅ ‖ack := ∅ ‖

ac = ND × {∅} ‖dr := ∅ ‖dt := ∅ ‖EVENTSsend_req =any x, y where
x ∈ ND − dr ∧ y ∈ ND − ac(x) ∧ nb(x) = ch(x) ∪ {y}then
req := req ∪ {x 7→ y} ‖ dr := dr ∪ {x}endsend_ak =any x, y where
x, y ∈ req ∧ x /∈ ac(y) ∧ y /∈ drthen
ack := ack ∪ {x 7→ y} ‖ ac(y) := ac(y) ∪ {x}endsolve_nt =any x, y where
x, y ∈ req ∧
x /∈ ac(y) ∧ y ∈ dr ∧ ctr(x) < ctr(y)then
ack := ack ∪ {x 7→ y} ‖ ac(y) := ac(y) ∪ {x}endprogress =any x, y where
x, y ∈ ack ∧ x /∈ dtthen
tr := tr ∪ {x 7→ y} ‖ dt := dt ∪ {x}endENDFig. 24. Fifth model leaderelection4 for the distributed leader eletion algorithm



The event-B Modelling Method 125REFINEMENT leaderelection5REFINES leaderelection4VARIABLES
ld, ts, TR,REQ, ACK, ch, dr, ac, dtINVARIANT
REQ ∈ ND × ND ∧ req = REQ ∪ ack ∧ REQ ∩ ack = ∅
ACK ∈ ND × ND ∧ ack = ACK ∪ tr ∧ ACK ∩ tr = ∅
TR ∈ ND × ND ∧ TR ⊆ tr ∧ ∀(x, y) · ( x, y ∈ TR ⇒ x /∈ ch(y))INITIALISATION
ld :∈ ND ‖ch = ND × {∅} ‖ac = ND × {∅} ‖dr := ∅ ‖dt := ∅ ‖
TR := ∅ ‖ REQ := ∅ ‖ACK := ∅EVENTSsend_req = Loal node xany x, y where

x ∈ ND − dr ∧ y ∈ ND − ac(x) ∧ nb(x) = ch(x) ∪ {y}then
REQ := REQ ∪ {x 7→ y} ‖ dr := dr ∪ {x}endsend_ak = Loal node yany x, y where
x, y ∈ REQ ∧ y /∈ drthen
REQ := REQ −; {x 7→ y} ‖ ACK := ACK ∪ {x 7→ y} ‖
ac(y) := ac(y) ∪ {x}endsolve_nt = Loal node yany x, y where
x, y ∈ REQ ∧ y ∈ dr ∧ ctr(x) < ctr(y)then
REQ := REQ −; {x 7→ y} ‖ ACK := ACK ∪ {x 7→ y} ‖
ac(y) := ac(y) ∪ {x}endprogress = Loal node xany x, y where
x, y ∈ ACKthen
ACK := ACK − {x 7→ y} ‖ TR := TR ∪ {x 7→ y} ‖ dt := dt ∪ {x}endreeive_nf = Loal node yany x, y where
x, y ∈ TRthen
TR := TR −; {x 7→ y} ‖ ch(y) := ch(y) ∪ {x}endENDFig. 25. Sixth model leaderelection5 for the distributed leader eletion algorithm
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nb ∈ ND → P(ND)
ch ∈ ND → P(ND)
ac ∈ ND → P(ND)
dr ⊆ ND
dt ⊆ ND

∀x · (x ∈ ND ⇒ nb(x) = g−1[{x}] )
∀x · (x ∈ ND ⇒ ch(x) ⊆ tr−1[{x}] )
∀x · (x ∈ ND ⇒ ac(x) = ack−1[{x}] )
dr = dom (req)
dt = dom (tr)Given a node x, the sets nb(x), ch(x), and ac(x) are supposed to be storedloally within the node. As the varying sets ch(x) and ac(x) are subsets ofthe onstant set nb(x), it is ertainly possible to further re�ne their enoding.Likewise the two sets dr and dt still appears to be global, but they an learlybe enoded loally in eah node by means of loal boolean variables.It is worth notiing that the de�nition of variable ch above is not given interms of an equality, rather in terms of an inlusion (this is thus not really ade�nition). This is due to the fat that the set ch(y) annot be updated whilethe event progress takes plae: this is beause this event an only at on itsloal data.A new event in leaderelection3, reeive_nf (for reeive on�rmation) isthus neessary to update the set ch(y). Next are the re�nement of the variousevents. elet =any x where

x ∈ ND ∧
nb(x) = ch(x)then
ld := xend

send_req =any x, y where
x ∈ ND − dr ∧
y ∈ ND − ac(x) ∧
nb(x) = ch(x) ∪ {y}then
req := req ∪ {x 7→ y} ‖
dr := dr ∪ {x}endsend_ak =any x, y where

x, y ∈ req ∧
x /∈ ac(y) ∧
y /∈ drthen
ack := ack ∪ {x 7→ y} ‖
ac(y) := ac(y) ∪ {x}end

solve_nt =any x, y where
x, y ∈ req ∧
x /∈ ac(y) ∧
y ∈ dr ∧
ctr(x) < ctr(y)then
ack := ack ∪ {x 7→ y} ‖
ac(y) := ac(y) ∪ {x}end
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x, y ∈ ack ∧
x /∈ dtthen
tr := tr ∪ {x 7→ y} ‖
dt := dt ∪ {x}end

reeive_nf =any x, y where
x, y ∈ tr ∧
x /∈ ch(y)then
ch(y) := ch(y) ∪ {x}endProofs that these events orretly re�ne their respetive abstrations aretehnially trivial. We now give in the following table, the loal node in hargeof eah event as enoded above

event nodeelet xsend_req xsend_ak ysolve_nt yprogress xreeive_nf yThe reader ould be surprised yet to see formulas suh as req := req ∪
{x 7→ y} or x, y ∈ req. They orrespond in fat to writing and reading opera-tions done by orresponding loal nodes as explained in the following table:

formula explanation
req := req ∪ {x 7→ y} x sends a request to y
x, y ∈ req y reads a request from x
ack := ack ∪ {x 7→ y} y sends an aknowledgement to x
x, y ∈ ack x reads an aknowledgement from y
tr := tr ∪ {x 7→ y} x sends a on�rmation to y
x, y ∈ tr y reads a on�rmation from yThe total number of proofs (all done mehanially with Atelier B [52℄and B4free/Clik'n'Prove [53℄) amounts to 106, where 24 required an easyinteration. Proofs help us to understand the ontention problem and ther�le of graph properties in the orretness of the solution. The re�nementsgradually introdue the various invariants of the system. No assumption ismade on the size of the network. The proof leads us to the disovery of theon�rmation event to get the omplete orretness and we hoose to introduea priority mehanism to solve the ontention, whih is not the solution of theIEEE 1394 protool: a new leader eletion distributed algorithm is proposed.

ACK,REQ and TR model ommuniation hannels; they ontain messageswhih are urrently sent and not yet reeived. We give the algorithm for theloal node x and x sends messages to another node y. We assume that eahsite has a unique number and ctr is de�ned by this assignment.



128 Dominique Cansell and Dominique MéryLeader Eletion AlgorithmLoal Node x ∈ NDLoal variables nb, ch, ac ⊆ ND, ld ∈ ND, dr, dt ∈ Boolif nb = ch then ld := x �if mes(y, ack) ∈ ACKthen
send(mes(x, tr), y) ‖ dt := dt ∪ {y} ‖
ACK := ACK − {mes(y, ack)} �if ¬dr ∧ y /∈ ac ∧ nb = ch ∪ {y}then
send(mes(x, req), y) ‖ dr := TRUE �if mes(y, req) ∈ REQ ∧ ¬drthen
send(mes(x, ack), y) ‖ ac := ac ∪ {y} ‖
REQ := REQ − {mes(y, req)} �if mes(y, req) ∈ REQ ∧ dr ∧ ctr(y) < ctr(x)then
send(mes(x, ack), y) ‖ ac := ac ∪ {y} ‖
REQ := REQ − {mes(y, req)} �if mes(y, tr) ∈ TRthen
ch := ch ∪ {y} ‖ TR := TR − {mes(y, tr)} �We have used programming-like notations for modelling messages ommu-niations (see model leaderelection5 25) and we detail the meaning of eahommuniation primitive:

• send(mes(x, req), y) adds the message mes(x, req) to REQ.
• send(mes(x, ack), y) adds the message mes(x, req) to ACK.
• send(mes(x, tr), y) adds the message mes(x, req) to TR.Our algorithm is orret with respet to the invariant of the development;we have not mentionned the question of termination. The termination is de-rived, when one assumes a minimal fairness for eah site: if a site an triggeran event, it will eventually trigger it, as long as it remains enabled.8 ConlusionB gathers a large ommunity of users whose ontributions go beyond the sopeof this doument; we fous our topis on the event B approah to illustratethe foundations of B. Before to onlude our text, we should omplete the Blandsape by an outline of work on B and with B.



The event-B Modelling Method 1298.1 Work on B and with BThe series of onferenes [24�26, 28, 65, 104℄ on B (in assoiation with the Zommunity) and books [2, 61, 66, 75, 101℄ on B demonstrate the strong ativityon B. The expressivity of the B language lead to three kinds of work usingonepts of B: extension of the B method, ombination of B with anotherapproah and appliations of B. We have already mentioned appliations ofthe B method in the introdution and, now, we sketh extensions of B andproposals to integrate B with other methods:Extending the B MethodThe onept of event as introdued in B by Abrial [3℄ ats on the globalstate spae of the system and has no parameter; on the ontrary, Papatsarasand Stoddart [92℄ ontrast this global style of development with one basedon interating omponents whih ommuniate by means of shared events;parameters in events are permitted. The parametrisation of events is alsoonsidered by Butler and Walden [35℄ who are implementing ation systemsin the B AMN.Events may or may not happen and new modalities are required to man-age them; the language of assertions of B is beoming too poor to expresstemporal properties like liveness, for instane. Abrial and Mussat [15℄ intro-due modalities into abstrat systems and develop proof obligations relatedto liveness properties; Méry [83℄ shows how the B onepts an be easily usedto deal with liveness and fairness properties. Bellegarde et al [23℄ analyse theextension of B using the LTL logi and the impat on the re�nement of eventsystems. Problems are related to the re�nement of systems while maintainingliveness and even fairness properties; it is di�ult and in many ases not pos-sible, beause the re�nement maintains previously validated properties of theabstrat model and it an not maintain every liveness property.Reently, MIver et al [82, 89℄ extend the Generalized Substitution Lan-guage to handle probability in B; an abstrat probabilisti hoie is added toB operators. A methodology is proposed to use this extension.Combining B with Another FormalimThe limited expressivity of the B language has inspired work on several pro-posals. Butler [33℄ investigates a mixed language inluding B AMN and CSP;CSP is used to struture abstrat mahines; the idea is exploited by Shneiderand Treharne [99, 105℄ who ontrol B mahines.Sine diagrammati formalisms o�er a visual representation of models,another integration of B with UML is ahieved by Butler [34℄ and by Le Danget al [77�79℄; B provides a semantial framework to UML omponents andallows one to analyse UML models. An interesting problem would be to studythe impat of the B re�nement into UML models.



130 Dominique Cansell and Dominique MéryMikhailov and Butler [86℄ ombine the theorem proving and the modelheking and fous on the B-method and a theorem proving tool assoiatedwith it, and the Alloy spei�ation notation and its model heker Alloy Con-straint Analyser. Software development in B an be assisted using Alloy andAlloy an be used for verifying re�nement of abstrat spei�ations.8.2 On the Proof ProessThe proof proess is supported by a proof assistant whih is either a part of theenvironment alled Atelier B [52℄ , or an environment alled Clik'n'Prove [8℄.A free version is available [53℄. Works on theories and reusing theories havebeen addressed by J.-R. Abrial et all in [11℄.8.3 Final RemarksThe design of (software) systems is an ativity based on logio-mathematialonepts suh as set-theoretial de�nitions; it gives rise to proof obligationsthat apture the essene of its orretness. The use of theoretial onepts ismainly due to the requirements of safety and quality of developed systems; itappears that the mathematis an help in improving the quality of softwaresystems. B is a method that an help the designers to onstrut safer systemsand it provides a realisti framework for developing a pragmati engineering.Mathematial theories [11℄ an be derived from srath or reused; in forthom-ing work, mehanisms for re-usability of developments will demonstrate theinreasing power of the appliability of B to realisti ase studies [10, 12, 42℄.Tools are already very helpful and will evolve towards a tool-set for developingsystems. The proof tool is probably a ruial element in the B approah andreent developments of the prover, ombined with the re�nement, validatesthe appliability of the B method to derive orret reative systems from ab-strat spei�ations. Another promising point is the introdution of patternsin the event B methodology. In [4℄, Abrial desribes the new B method mainlyrelated to B events; the projet RODIN [69, 96℄ aims to reate a methodologyand supporting open tool platform for the ost e�etive rigorous develop-ment of dependable omplex software systems and servies, espeially usingthe event B method; it will provide a suitable framework for further work onevent B.AknowledgementsWe thank J.-R. Abrial for his permanent help, support and omments;Dines Bjoerner and Martin Henson have aepted a long delay for obtainingLATEX�les and we thank them for their support. It was a pleasure to spendtwo weeks with Dines and Martin in Slovakia and we espeially enjoy the dailypedagogial meetings. Thanks!
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