
Course � Modelling Software-based Systems �

System Engineering and Hybrid Systems

Zheng Cheng and Dominique Méry
Telecom Nancy

Université de Lorraine

Année universitaire 2021-2022
13 décembre 2021

System Engineering and Hybrid Systems(13 décembre 2021) (Zheng Cheng and Dominique Méry) 1/74

Summary

1 System Engineering

2 Hybrid Models

3 The LUSTRE Programming Language

4 Discrete Models in Event B

5 The Event B modelling language

6 Summary on Event-B

7 Modelling in B-System

8 Extending the scope of Event-B

System Engineering and Hybrid Systems(13 décembre 2021) (Zheng Cheng and Dominique Méry) 2/74

Current Section Summary

1 System Engineering

2 Hybrid Models

3 The LUSTRE Programming Language

4 Discrete Models in Event B

5 The Event B modelling language

6 Summary on Event-B

7 Modelling in B-System

8 Extending the scope of Event-B

System Engineering and Hybrid Systems(13 décembre 2021) (Zheng Cheng and Dominique Méry) 3/74

Current Subsection Summary

1 System Engineering

2 Hybrid Models

3 The LUSTRE Programming Language

4 Discrete Models in Event B

5 The Event B modelling language

6 Summary on Event-B

7 Modelling in B-System

8 Extending the scope of Event-B

System Engineering and Hybrid Systems(13 décembre 2021) (Zheng Cheng and Dominique Méry) 3/74

Problem of landing a spacecraft on the Moon

• Assuming that aerodynamic and gravitational forces of bodies other
than the Moon are negligible, and lateral motion can be ignored.

• Accordingly, the descent trajectory is vertical, and the thrust vector
is tangent to the trajectory.

• Because the spacecraft is near the Moon, we assume that the lunar
acceleration of gravity has the constant value , that the relative
velocity of the exhaust gases with respect to the spacecraft is
constant, and that the mass rate is constrained by , where is
constant and gives the maximum rate of change of the mass due to
burning the fuel.

System Engineering and Hybrid Systems(13 décembre 2021) (Zheng Cheng and Dominique Méry) 4/74

Problem of landing a spacecraft on the Moon

• t is time

• m(t) is the mass of the spacecraft, which varies as fuel is burned

• m’(t) is the rate of change of mass, constrained by −µ ≤ m′(t) ≤ 0

• g = 12.63 is the gravitational constant near the Moon

• k is a constant, the relative velocity of the exhaust gases with
respect to the spacecraft

• T (t) = −km′(t) the thrust

• h(t) is the height with h(t) ≥ 0.

• v(t) = h′(t) the velocity

• u(t) = m(t) the control function

System Engineering and Hybrid Systems(13 décembre 2021) (Zheng Cheng and Dominique Méry) 5/74

Problem of landing a spacecraft on the Moon

Recalling assumptions, aerodynamic forces and gravitational forces of
bodies other than the Moon are negligible and lateral motion is ignored.
Thus the descent trajectory is vertical and the thrust vector is
perpendicular to the ground. We also suppose that m0 = m(0) = M+F
where is the mass of the spacecraft without fuel and F is the initial mass
of fuel ; m(t) > M , since as we expect that the spacecraft will return to
Earth, it needs some fuel for takeoff.
The equation of motion is given by applying Newton’s law :

m(t)×h′′(t) = −g×m(t)+T (t) (1)

System Engineering and Hybrid Systems(13 décembre 2021) (Zheng Cheng and Dominique Méry) 6/74

Current Subsection Summary

1 System Engineering

2 Hybrid Models

3 The LUSTRE Programming Language

4 Discrete Models in Event B

5 The Event B modelling language

6 Summary on Event-B

7 Modelling in B-System

8 Extending the scope of Event-B

System Engineering and Hybrid Systems(13 décembre 2021) (Zheng Cheng and Dominique Méry) 7/74

Problem of the thermostat

The temperature of a room is controlled through a thermostat, which
continuously senses the temperature and turns a heater on and off. The
temperature is defined by a differential equation (ODE). We used two
diagrams for expressing this system and its behaviours. The behaviour is
simply stated as :

• When the heater is off, the temperature, denoted by the variable Θ,
decreases according to the exponential function Θ(t) = ΘMe

−Kt,
where t is denoting the time, ΘM the initial temperature, and K is a
constant determined by the room.

• When the heater is on, the temperature is characterized by the
function Θ(t) = ΘMe

−Kt+H(1−e−Kt),where H is a constant that
depends on the power of the heater.

Safety requirements for this system is that the control is such that
∀t.t 0..+∞⇒ Θm ≤ Θ(t) ≤ ΘM . The continuous variable Θ is denoting
the state of the function Θ(t).

System Engineering and Hybrid Systems(13 décembre 2021) (Zheng Cheng and Dominique Méry) 8/74

Problem of the thermostat

Thermostat Off

θ′ = −Kθ
Θm < θ

Thermostat On

θ′ = K(H−θ)
θ < ΘM

θ ≥ ΘM

θ ≤ Θm

System Engineering and Hybrid Systems(13 décembre 2021) (Zheng Cheng and Dominique Méry) 9/74

Current Subsection Summary

1 System Engineering

2 Hybrid Models

3 The LUSTRE Programming Language

4 Discrete Models in Event B

5 The Event B modelling language

6 Summary on Event-B

7 Modelling in B-System

8 Extending the scope of Event-B

System Engineering and Hybrid Systems(13 décembre 2021) (Zheng Cheng and Dominique Méry) 10/74

Controller System

Disturbances

u

Measurements

r e y

−

ym

System Engineering and Hybrid Systems(13 décembre 2021) (Zheng Cheng and Dominique Méry) 11/74

Triptych Plant,Controller,Environment

Environment

User

Plant

Control

Disturbances

Interaction

sensingactuating

System Engineering and Hybrid Systems(13 décembre 2021) (Zheng Cheng and Dominique Méry) 12/74

The TOULOUSE Pattern

• xp, xs and t are three variables which are modelling respectively the
state of the plant at the current time, the control state of the
discrete system and the current time.

• An event Behave updating the plant state according to some
disturbances from the environment.

• An event Actuation updating the current state of the plant by
integrating decision of the controller.

• An event Sensing collecting the data from the plant by delivering
those values to the controller.

• An event Transition modelling the modification of the control state
following the different control states identified in the problem.

System Engineering and Hybrid Systems(13 décembre 2021) (Zheng Cheng and Dominique Méry) 13/74

Current Subsection Summary

1 System Engineering

2 Hybrid Models

3 The LUSTRE Programming Language

4 Discrete Models in Event B

5 The Event B modelling language

6 Summary on Event-B

7 Modelling in B-System

8 Extending the scope of Event-B

System Engineering and Hybrid Systems(13 décembre 2021) (Zheng Cheng and Dominique Méry) 14/74

System description

Our next example is a temperature control system for a heat producing
reactor. The system controls the coolant temperature in a reactor tank
by moving two independent control rods. The goal is to maintain the
coolant (tank) between the temperatures ΘM and Θm. When the
temperature reaches its maximum value ΘM the tank must be
refrigerated with one of the rods. The temperature rises at a rate vr, and
decreases at rates v1, and v2 depending on which rod is being used. A
rod can be moved again only if T time units have elapsed since the end
of its previous movement. If the temperature of the coolant cannot
decrease because there is no available rod, a complete shutdown is
required. Fig. ?? shows the hybrid system of this example : variable Θ
measures the temperature, and the values of clocks x1 and x2 represent
the times elapsed since the last use of rod 1 and rod 2, respectively. The
goal of is to ascertain that the reactor never reaches the critical
temperature ΘM without at least one of the rods available, or a
shutdown has been initiated. An Event-B solution is given in [?].

System Engineering and Hybrid Systems(13 décembre 2021) (Zheng Cheng and Dominique Méry) 15/74

Run-time behaviours of a temperature control system for a heat
producing reactor

System Engineering and Hybrid Systems(13 décembre 2021) (Zheng Cheng and Dominique Méry) 16/74

First abstract view of the system

• initialising

• tofirstcooling1

• towarming1

• tocooling1

• tofirstcooling2

• towarming2

• tocooling2

• emergtency

System Engineering and Hybrid Systems(13 décembre 2021) (Zheng Cheng and Dominique Méry) 17/74

First abstract view of the system

INIT WARMING
initialising

COOLING2

tofirstcooling2
tocooling2

towarming2

COOLING1
tofirstcooling1
tocooling1

towarming1

SHUTDOWN

emergency

System Engineering and Hybrid Systems(13 décembre 2021) (Zheng Cheng and Dominique Méry) 18/74

INIT

WARMING
θ′ = vr
x1
′ = 1

x2
′ = 1

θ ≤ ΘM

x1 := T ∧ x2 := T

θ := θm

COOLING1
θ′ = −v1
x1
′ = 1

x2
′ = 1

θ ≥ Θm

θ = Θm

x1 := 0

θ = ΘM

x1 ≥ ΘM

COOLING2
θ′ = −v2
x1
′ = 1

x2
′ = 1

θ ≥ Θm

θ = ΘM

x2 ≥ ΘM

θ = Θm

x2 := 0

SHUTDOWN

[
θ = ΘM

∧x1 < T ∧ x2 < T

)

System Engineering and Hybrid Systems(13 décembre 2021) (Zheng Cheng and Dominique Méry) 19/74

First refinement

• initialising

• tofirstcooling1 REFINES towarming1
REFINES tocooling1
REFINES tofirstcooling2
REFINES tocoolin2

• emergency

• C1STEP3

• C1STEP4

• C2STEP1

• C1STEP1

• C1STEP2

• C2STEP2

• C2STEP3

• C2STEP4

System Engineering and Hybrid Systems(13 décembre 2021) (Zheng Cheng and Dominique Méry) 20/74

Model

INIT WARMING
initialising COOLING1

TOCOOLINGtofirstcooling1
tocooling1

SHUTDOWN

emergency

COOLING1
PRECOOLING

c1step1

COOLING1
INCOOLING

c1step2

COOLING1
POSTCOOLING

c1step3COOLING1
TOWARMING

c1step3

towarming1

COOLING2
TOCOOLING

tofirstcooling2
tocooling2

COOLING2
PRECOOLING

c2step1

COOLING2
INCOOLING

c2step2 COOLING2
POSTCOOLING

c2step3

COOLIN2
TOWARMING

c2step3

towarming2

System Engineering and Hybrid Systems(13 décembre 2021) (Zheng Cheng and Dominique Méry) 21/74

INIT

WARMING
θ′ = vr
x1′ = 1
x2′ = 1
θ ≤ ΘM

initialising COOLING1
TOCOOLINGtofirstcooling1

tocooling1

SHUTDOWN

emergency

COOLING1
PRECOOLING

c1step1

COOLING1
INCOOLING
θ′ = −v1
x1′ = 1
x2′ = 1
θ ≥ Θm

c1step2

COOLING1
POSTCOOLING

c1step3COOLING1
TOWARMING

c1step3

towarming1

COOLING2
TOCOOLING

tofirstcooling2
tocooling2

COOLING2
PRECOOLING

c2step1

COOLING2
INCOOLING
θ′ = −v2
x1′ = 1
x2′ = 1
θ ≥ Θm

c2step2 COOLING2
POSTCOOLING

c2step3

COOLIN2
TOWARMING

c2step3

towarming2

System Engineering and Hybrid Systems(13 décembre 2021) (Zheng Cheng and Dominique Méry) 22/74

Current Section Summary

1 System Engineering

2 Hybrid Models

3 The LUSTRE Programming Language

4 Discrete Models in Event B

5 The Event B modelling language

6 Summary on Event-B

7 Modelling in B-System

8 Extending the scope of Event-B

System Engineering and Hybrid Systems(13 décembre 2021) (Zheng Cheng and Dominique Méry) 23/74

Systems

Transformational systems

• Inputs available on execution start

• Outputs delivered on execution end

Interactive systems

• Interact with the environment

• Have subjective speed requirements ¿

Reactive Systems

• Interact with the environment

• Have subjective speed requirements

System Engineering and Hybrid Systems(13 décembre 2021) (Zheng Cheng and Dominique Méry) 23/74

Systems

Transformational systems

• Inputs available on execution start

• Outputs delivered on execution end

Interactive systems

• Interact with the environment

• Have subjective speed requirements ¿

Reactive Systems

• Interact with the environment

• Have subjective speed requirements

System Engineering and Hybrid Systems(13 décembre 2021) (Zheng Cheng and Dominique Méry) 23/74

Systems

Transformational systems

• Inputs available on execution start

• Outputs delivered on execution end

Interactive systems

• Interact with the environment

• Have subjective speed requirements ¿

Reactive Systems

• Interact with the environment

• Have subjective speed requirements

System Engineering and Hybrid Systems(13 décembre 2021) (Zheng Cheng and Dominique Méry) 23/74

Systems

Transformational systems

• Inputs available on execution start

• Outputs delivered on execution end

Interactive systems

• Interact with the environment

• Have subjective speed requirements ¿

Reactive Systems

• Interact with the environment

• Have subjective speed requirements

System Engineering and Hybrid Systems(13 décembre 2021) (Zheng Cheng and Dominique Méry) 23/74

Reactive Systems

System Engineering and Hybrid Systems(13 décembre 2021) (Zheng Cheng and Dominique Méry) 24/74

Time and Clock

Existence of a discrete clock :

• Software cyclically activated,

• Inputs read at the cycle beginning (no inputs changes during the
cycle)

• No cycle overlap

• Outputs delivered at cycle end

The cycle execution duration is considered to be null
Reasoning is possible

System Engineering and Hybrid Systems(13 décembre 2021) (Zheng Cheng and Dominique Méry) 25/74

Reactive Systems

reactive model

A reactive model M is receiving inputs and for each input it produces
outputs.

M
inputs ~i = . . . in . . . i2i1i0 outputs ~o = . . . on . . . o2o1o0

• When an input i is received at time ti, the model M is producing an
output o at time to.

• ti < to : the reaction takes time which is considered as small enough.

System Engineering and Hybrid Systems(13 décembre 2021) (Zheng Cheng and Dominique Méry) 26/74

Control/Command

• Command : laws for the evolution of the dynamics as Newton’s laws

I command of actuators
I time is continuous but only a discrete set of real values is taken into

account.

• Control : laws for behaviours of the system

I deciding the law of command to apply on the system.
I verifying the correct behaviour of a system.
I time is discrete

Command Control

inputs ~i = . . . in . . . i2i1i0

outputs ~o = . . . on . . . o2o1o0

System Engineering and Hybrid Systems(13 décembre 2021) (Zheng Cheng and Dominique Méry) 27/74

Controllers

• parallelism : the controller should take into account several hardware
equipments

• determinism : when an input i is handled by the controler, the
controller reacts always in the same way.

• real time : the system can not wait.

• safety ; the system is critical.

Synchronous abstraction

• facilitating the temporal reasoning

• two principles
I simultaneity (no concurrency)
I one time reference nothing does happen between two instants

System Engineering and Hybrid Systems(13 décembre 2021) (Zheng Cheng and Dominique Méry) 28/74

General View of the : Formal Engineering Methodology

plant
model

control
system

Formal Stream Engineering Stream

Informal Requirements

Formal Specification

Formal Verification

Formal Validation

Real Time Animation

outputs o inputs i

integration

Error Correction

Error Correction

Domain Feedback

System Engineering and Hybrid Systems(13 décembre 2021) (Zheng Cheng and Dominique Méry) 29/74

Current Section Summary

1 System Engineering

2 Hybrid Models

3 The LUSTRE Programming Language

4 Discrete Models in Event B

5 The Event B modelling language

6 Summary on Event-B

7 Modelling in B-System

8 Extending the scope of Event-B

System Engineering and Hybrid Systems(13 décembre 2021) (Zheng Cheng and Dominique Méry) 30/74

Hybrid Automata

Hybrid System

An hybrid system HS is a set of subsystems SS1, . . . SSn interacting
through discrete and continuous variables where subsystems SS1, . . . SSn

are either fully discrete systems, or fully continuous systems.

• using both discrete and continuous variables.

• assumptions on the possible transitions

• Hybrid systems are modelled by hybrid models which may have
different forms.

System Engineering and Hybrid Systems(13 décembre 2021) (Zheng Cheng and Dominique Méry) 30/74

Hybrid automaton

Hybrid automaton

A hybrid automaton is a collection HA =
(X,L, Init, Inv, f, E,Guard,Assign,Σ) where :

• X ⊆ Rn : the continuous state space and x = (x1, x2, . . . , xn), where
xi ∈ R, i ∈ {1, 2, . . . , n, } represents the continuous dynamics.

• L is a finite set of locations.

• Init ⊆ L×X is a set of initial location state pairs.

• Inv ∈ L −→ P(X) assigns to each location `(∈ L) an invariant to be
satisfied by the state x while in the location `.

• f ∈ L −→ (XL −→ Rn) assigns to each location ` a continuous vector
field f` such that the state x ∈ X should satisfy d

dt
x = f`(x).

• E ⊆ L×Σ×L is the set of transitions, also called switches, where Σ is a
set of transition labels.

• Guard ∈ E −→ P(X) assigns to each transition a guard that has to be
satisfied by the state x if the transition is taken.

• Assign ∈ E −→ (X −→ X) assigns to each transition an assignment
that may alter the state x when the transition is taken.

System Engineering and Hybrid Systems(13 décembre 2021) (Zheng Cheng and Dominique Méry) 31/74

hybrid systems as hybrid automata : the thermostat

• The thermostat with two
possible modes.

• The first mode is defining
the warming phase of
system and is characterized
by a linear differential l
equation.

• The second mode is
defining as well the cooling
phase.

Mode cooling

ẋ = −Kx
x ≥ Tmin

x = x0

Mode warming

ẋ = K(h−x)
x ≤ Tmax

[
on

x ≤ Ton

]

[
off

x ≥ Toff

]

System Engineering and Hybrid Systems(13 décembre 2021) (Zheng Cheng and Dominique Méry) 32/74

hybrid systems as hybrid automata : the bouncing ball

• The bouncing ball following
the laws for the dynamics of
Newton.

• The ball pushes on the floor
and the floor responds by
pushing back on the ball
with an equal amount of
force.

Mode Main

ḣ = v
v̇ = −g
h > 0

h=0,v :=cv

v := v0, h := h0

• The push the ball receives from the floor causes it to rebound, meaning
it bounces up.

• The moving ball again has kinetic energy.

• This is an example of Newton’s Third Law of Motion : Action/Reaction.
The principles are translated by one mode hybrid automaton.

System Engineering and Hybrid Systems(13 décembre 2021) (Zheng Cheng and Dominique Méry) 33/74

hybrid systems as hybrid automata : comments

• Hybrid automata are clearly structures that organise the different
modes or phases of the hybrid system under consideration.

• On the two examples :
I the nodes are encapsulating the differential equations and the piece

of system
I the transitions are actions which are modelling the instantaneous

switching from one mode to another mode.
I Each mode is describing a behaviour of the system between two

instants.

System Engineering and Hybrid Systems(13 décembre 2021) (Zheng Cheng and Dominique Méry) 34/74

Observation of an hybrid system

• Modelling an hybrid systems requires to handle discrete features as
well as continuous features.

• The interactions among the different active parts involve the use of
sensors and actuators

• and other possible interactions are related to the possible user who is
possibly executing an operation.

• disturbances are possible observable events.

System Engineering and Hybrid Systems(13 décembre 2021) (Zheng Cheng and Dominique Méry) 35/74

• Hybrid systems are generally related to real systems in different
domains with specific laws as Newton’s laws of the classical
mechanics.

• The first abstraction is to consider that the phenomenon under
consideration is characterized by a state variable namely
x ∈ Time −→ D where Time is modelling the time and D is a set
for values of the current domain.

• D is generally a Banach space (a complete normed vector space).

• The state variable x is modified by events observed during the time
of the system and the now variable is modelling the current time and
we consider that the past of the state variable x can not be modified
but the future of x can be constrained by some events updating it.

System Engineering and Hybrid Systems(13 décembre 2021) (Zheng Cheng and Dominique Méry) 36/74

The domain D is generally of the form Rn and is able to model features
as temperature, level of a tank, density, pressure, . . . and it is equipped
with mathematical properties that make possible to state laws using
differential equations. A very important issue is the continuity of the
description or more generally the fact that the phenomenon is viewed as
sequence of pieces of curves with possible discontinuity regions. For
instance, we use the following diagram ?? shows a blue continuous curve
which is between two other curves minimum and maximum. The curve is
defined in a graphical way and is build using analytic functions and it is
the concatenation of several curves which are assembled to produce the
general view of the evolution of a given value at time t as x(t). ite

System Engineering and Hybrid Systems(13 décembre 2021) (Zheng Cheng and Dominique Méry) 37/74

Example of a curve

0 0.5 1 1.5 2 2.5 3

0.5

1

1.5

2

t

x
Minimum
Maximum

System Engineering and Hybrid Systems(13 décembre 2021) (Zheng Cheng and Dominique Méry) 38/74

Example of a disturbed curve

0 0.5 1 1.5 2 2.5 3

0.5

1

1.5

2

t

x

Minimum
Maximum

System Engineering and Hybrid Systems(13 décembre 2021) (Zheng Cheng and Dominique Méry) 39/74

Properties for hybrid models

Different cases should be considered with respect to the required
assertions :

• A safety property safe(t1, t2, x,D, S) for x is prescribing that safe
values of x in the interval [t1, t2] are in S, a subset of D : S ⊆ D

x ∈ R+ −→ D
∀t ∈ [t1, t2] : x(t) ∈ S

• A stabilisation property stable(t1, t2, x,D,U,E, S) is prescribing
that U (Unstable)) and S (Stable) are two disjunct subsets of D
and that x(t1) ∈ U , x(t2) ∈ S and the function x between t1 and t2
is continuously evolving from t1 to t2 :

U ⊆ D,S ⊆ D,E ⊆ D,U ⊆ E,S ⊆ E
x ∈ R+ −→ D
x(t1) ∈ U
x(t2) ∈ S
x ∈ CD((t1, t2])

System Engineering and Hybrid Systems(13 décembre 2021) (Zheng Cheng and Dominique Méry) 40/74

Examples of safety properties

• when one define a
domain R, a safety
property
S = [0.5, 2.4] which
is stating that three
possible curves
between t1 = 0 and
t2 = 3 should be
satisfying that
x(t) ∈ S.

0 0.5 1 1.5 2 2.5 3

1

2

3

4

5

t

x

Curve 1 x1
Curve 2 x2
Curve 3 x3
Minimum
Maximum

• Curves 1 (safe(0, 3, x1,R, S)) and 3 (safe(0, 3, x3,R, S)) are blue
and are satisfying what is the safety property.

• Curve 2 is not correct : safe(0, 3, x2,R, S) is not satisfied for x2(2)
over the value 2.4.

System Engineering and Hybrid Systems(13 décembre 2021) (Zheng Cheng and Dominique Méry) 41/74

Examples of stabilisation properties

•
stable(t1, t2, x,R, U, S)
with the following
definitions :

I t1 = 0, t2 = 3,
U =]−∞, 2],

I S =]2,+∞[. x1
is satisfying
stable(t1, t2, x1,R, U, S)
but not
stable(t1, t2, x2,R, U, S).

0 0.5 1 1.5 2 2.5 3

0

1

2

3

4

5

t

x

x1
x2

Minimum
EvolutionMin
EvolutionMax

System Engineering and Hybrid Systems(13 décembre 2021) (Zheng Cheng and Dominique Méry) 42/74

Current Section Summary

1 System Engineering

2 Hybrid Models

3 The LUSTRE Programming Language

4 Discrete Models in Event B

5 The Event B modelling language

6 Summary on Event-B

7 Modelling in B-System

8 Extending the scope of Event-B

System Engineering and Hybrid Systems(13 décembre 2021) (Zheng Cheng and Dominique Méry) 43/74

LUSTRE Programs

• A Lustre program or subprogram is called a node.

• Lustre is a functional language operating on streams
I a stream is a finite or infinite sequence of values.
I Values of a stream are of the same type called the type of the stream.

• The behavior of a LUSTRE program is cyclic

• At the nth execution cycle, all the involved streams take their nth
value.

• A node defines one or several output parameters as functions of one
or several input parameters and parameters are streams.

System Engineering and Hybrid Systems(13 décembre 2021) (Zheng Cheng and Dominique Méry) 43/74

Semantical Concepts for Reactive Programming

•

4 4 4 . . . 4 . . .
x x0 x1 . . . xn . . .
y y0 y1 . . . yn . . .
x+y x0+y0 x1+y1 . . . xn+yn . . .

• x x0 x1 . . . xn . . .
pre x NIL x0 . . . xn−1 . . .

•
x x0 x1 . . . xn . . .
y y0 y1 . . . yn . . .
x->y x0 y1 . . . yn . . .

• nat = 0 -> 1 -> pre nat

•

h true false true true false
x x0 x1 . . . xn . . .
x

when

h

x0 − x2 x3 −

System Engineering and Hybrid Systems(13 décembre 2021) (Zheng Cheng and Dominique Méry) 44/74

LUSTRE Programs

• A LUSTRE program is called a node NODE.

• A LUSTRE program denotes an infinite sequence of values as
(x0 x1 x2 . . .)

• Two operators of programs :

I pre
I −→

• ∀n ≥ 0.CUPn+1 = CUPn+1 is written as follow
CUP = 0 −→ (1+pre(CUP))

• and will produce the sequence (0 1 2 ...).

• FIB = 0 −→ 1 −→ (pre(FIB)+pre(pre(FIB)))

System Engineering and Hybrid Systems(13 décembre 2021) (Zheng Cheng and Dominique Méry) 45/74

LUSTRE Programs

•

node EDGE(X : bool) returns (Y : bool)
let

Y = false→ X and not pre(X)
tel

désigne la suite (false, x1 ∧ ¬x0, x2 ∧ ¬x1, ...)
• Counter
C = 0 −→ pre(C)+1 returnd the sequence of naturals
C = 0 −→ if X then pre(C)+1 else pre(C)
counts the number of occurrences of X which are true.
We do notvtake into account the initial value
PC = 0 −→ pre(C)
C = if X then PC+1 else PC

System Engineering and Hybrid Systems(13 décembre 2021) (Zheng Cheng and Dominique Méry) 46/74

Counter

•

nodeCOUNTER(init, incr : int;X, reset : bool)returns(C : int)
let

PC = init − > pre C
C = if reset then init

else if X then (PC+incr)
elsePC;

tel

• odds = COUNTER(0, 2, true, true− > false) définit les entiers
impairs.

System Engineering and Hybrid Systems(13 décembre 2021) (Zheng Cheng and Dominique Méry) 47/74

LUSTRE Constructs

• Two operators over programs

I pre
I −→

• X when B

• current X
• assert

I assert not (x and y)
I assert (true− > not(x and pre(x)))

System Engineering and Hybrid Systems(13 décembre 2021) (Zheng Cheng and Dominique Méry) 48/74

Counter

node COUNTER(init,incr:int; X,reset:bool) returns (C:int)

let

PC=init-> pre C

C = if reset then init

else if X then (PC+incr)

else PC;

tel

• odds = COUNTER(0, 2, true, true− > false) defines the odd
natural numbers.

System Engineering and Hybrid Systems(13 décembre 2021) (Zheng Cheng and Dominique Méry) 49/74

LUSTRE constructs and operators

• Two operators over programs

I pre
I −→

• X when B : filter of X when B is true.

• current X : interpolation of X

• and, not, or, xor, . . . are boolean operators over streams.

• assert

I assert not (x and y)
I assert (true− > not(x and pre(x)))

• reusing nodes

node FALLING_EDGE(X:bool) returns (Y:bool)

let

Y= EDGE(not X);

tel

System Engineering and Hybrid Systems(13 décembre 2021) (Zheng Cheng and Dominique Méry) 50/74

Integration

• f a function defined over time mapping to real values and we want to
compute the integral of f .

• Two values are received by programs Fn = f(xn) and
xn+1 = xn+STEPn+1

• Computing Y : Yn+1 = Yn+(Fn+Fn+1)·STEPn+1/2

• The value of Y is a data

node integration(F,STEP,init:real) returns (Y:real)

let

Y= init -> pre(Y)+ ((F + pre(F))*STEP)/2.0;

tel

System Engineering and Hybrid Systems(13 décembre 2021) (Zheng Cheng and Dominique Méry) 51/74

Verification by observers

• Description of the property to check and the assumptions over the
environment.

• An observer of a safety property is a program using as input
input/output of the program to check and decide by emitting a signal
at any time if the property is violated or not.

System Engineering and Hybrid Systems(13 décembre 2021) (Zheng Cheng and Dominique Méry) 52/74

Programming a switch

• Transforming a signal level by a switch used as follows :

I two possible signals as input set or reset
I an initial value initial
I when a set signal occurs, the level is set to true.
I when a reset signal occurs, the level is set to false.
I when no signal occurs, the level is unchanged.pas

• a signal is modelled as a boolean

node SWITCH1(set,reset,initial: bool) returns (level:bool)

let

level = initial -> if set the true

else if reset then false

else pre(level);

tel

• However, this program dpes not model a switch with one button.

state = SWITCH1(change,change,true)

System Engineering and Hybrid Systems(13 décembre 2021) (Zheng Cheng and Dominique Méry) 53/74

Programming a one button switch

• node SWITCH(set,reset,initial: bool) returns (level:bool)

let

level = initial -> if set and not pre(level) then true

else if reset then false

else pre(level);

tel

• Verification :

node verification(set,reset,initial: bool) returns (ok:bool)

let

level = SWITCH(set,reset,initial);

level1 = SWITCH(set,reset,initial);

ok = (level = level1);

assert not(set and reset)

tel

• the two versions are identical aq long as the two buttons are different.

System Engineering and Hybrid Systems(13 décembre 2021) (Zheng Cheng and Dominique Méry) 54/74

Current Section Summary

1 System Engineering

2 Hybrid Models

3 The LUSTRE Programming Language

4 Discrete Models in Event B

5 The Event B modelling language

6 Summary on Event-B

7 Modelling in B-System

8 Extending the scope of Event-B

System Engineering and Hybrid Systems(13 décembre 2021) (Zheng Cheng and Dominique Méry) 55/74

Modelling systems in Event-B

MACHINE
m

SEES
c

VARIABLES
x

INVARIANT
I(x)

THEOREMS
Q(x)

INITIALISATION
Init(x)

EVENTS
. . . e

END

c defines the static environment for the proofs
related to m : sets, constants, axioms, theorems Γ(m).

Γ(m) ` ∀x ∈ V alues : Init(x)⇒ I(x)

∀e :
Γ(m) ` ∀x, x′, u ∈ V alues : I(x) ∧R(u, x, x′)⇒ I(x′)

Γ(m) ` ∀x ∈ V alues : I(x)⇒ Q(x)

e
ANY

u
WHERE

G(x, u)
THEN

x : |(R(u, x, x′))
END

or e is observed x
e−→ x′

System Engineering and Hybrid Systems(13 décembre 2021) (Zheng Cheng and Dominique Méry) 55/74

Modelling systems in Event-B

MACHINE
m

SEES
c

VARIABLES
x

INVARIANT
I(x)

THEOREMS
Q(x)

INITIALISATION
Init(x)

EVENTS
. . . e

END

c defines the static environment for the proofs
related to m : sets, constants, axioms, theorems Γ(m).

Γ(m) ` ∀x ∈ V alues : Init(x)⇒ I(x)

∀e :
Γ(m) ` ∀x, x′, u ∈ V alues : I(x) ∧R(u, x, x′)⇒ I(x′)

Γ(m) ` ∀x ∈ V alues : I(x)⇒ Q(x)

e
ANY

u
WHERE

G(x, u)
THEN

x : |(R(u, x, x′))
END

or e is observed x
e−→ x′

System Engineering and Hybrid Systems(13 décembre 2021) (Zheng Cheng and Dominique Méry) 55/74

Modelling systems in Event-B

MACHINE
m

SEES
c

VARIABLES
x

INVARIANT
I(x)

THEOREMS
Q(x)

INITIALISATION
Init(x)

EVENTS
. . . e

END

c defines the static environment for the proofs
related to m : sets, constants, axioms, theorems Γ(m).

Γ(m) ` ∀x ∈ V alues : Init(x)⇒ I(x)

∀e :
Γ(m) ` ∀x, x′, u ∈ V alues : I(x) ∧R(u, x, x′)⇒ I(x′)

Γ(m) ` ∀x ∈ V alues : I(x)⇒ Q(x)

e
ANY

u
WHERE

G(x, u)
THEN

x : |(R(u, x, x′))
END

or e is observed x
e−→ x′

System Engineering and Hybrid Systems(13 décembre 2021) (Zheng Cheng and Dominique Méry) 55/74

Modelling systems in Event-B

MACHINE
m

SEES
c

VARIABLES
x

INVARIANT
I(x)

THEOREMS
Q(x)

INITIALISATION
Init(x)

EVENTS
. . . e

END

c defines the static environment for the proofs
related to m : sets, constants, axioms, theorems Γ(m).

Γ(m) ` ∀x ∈ V alues : Init(x)⇒ I(x)

∀e :
Γ(m) ` ∀x, x′, u ∈ V alues : I(x) ∧R(u, x, x′)⇒ I(x′)

Γ(m) ` ∀x ∈ V alues : I(x)⇒ Q(x)

e
ANY

u
WHERE

G(x, u)
THEN

x : |(R(u, x, x′))
END

or e is observed x
e−→ x′

System Engineering and Hybrid Systems(13 décembre 2021) (Zheng Cheng and Dominique Méry) 55/74

Modelling systems in Event-B

MACHINE
m

SEES
c

VARIABLES
x

INVARIANT
I(x)

THEOREMS
Q(x)

INITIALISATION
Init(x)

EVENTS
. . . e

END

c defines the static environment for the proofs
related to m : sets, constants, axioms, theorems Γ(m).

Γ(m) ` ∀x ∈ V alues : Init(x)⇒ I(x)

∀e :
Γ(m) ` ∀x, x′, u ∈ V alues : I(x) ∧R(u, x, x′)⇒ I(x′)

Γ(m) ` ∀x ∈ V alues : I(x)⇒ Q(x)

e
ANY

u
WHERE

G(x, u)
THEN

x : |(R(u, x, x′))
END

or e is observed x
e−→ x′

System Engineering and Hybrid Systems(13 décembre 2021) (Zheng Cheng and Dominique Méry) 55/74

Modelling systems in Event-B

MACHINE
m

SEES
c

VARIABLES
x

INVARIANT
I(x)

THEOREMS
Q(x)

INITIALISATION
Init(x)

EVENTS
. . . e

END

c defines the static environment for the proofs
related to m : sets, constants, axioms, theorems Γ(m).

Γ(m) ` ∀x ∈ V alues : Init(x)⇒ I(x)

∀e :
Γ(m) ` ∀x, x′, u ∈ V alues : I(x) ∧R(u, x, x′)⇒ I(x′)

Γ(m) ` ∀x ∈ V alues : I(x)⇒ Q(x)

e
ANY

u
WHERE

G(x, u)
THEN

x : |(R(u, x, x′))
END

or e is observed x
e−→ x′

System Engineering and Hybrid Systems(13 décembre 2021) (Zheng Cheng and Dominique Méry) 55/74

Modelling systems in Event-B

MACHINE
m

SEES
c

VARIABLES
x

INVARIANT
I(x)

THEOREMS
Q(x)

INITIALISATION
Init(x)

EVENTS
. . . e

END

c defines the static environment for the proofs
related to m : sets, constants, axioms, theorems Γ(m).

Γ(m) ` ∀x ∈ V alues : Init(x)⇒ I(x)

∀e :
Γ(m) ` ∀x, x′, u ∈ V alues : I(x) ∧R(u, x, x′)⇒ I(x′)

Γ(m) ` ∀x ∈ V alues : I(x)⇒ Q(x)

e
ANY

u
WHERE

G(x, u)
THEN

x : |(R(u, x, x′))
END

or e is observed x
e−→ x′

System Engineering and Hybrid Systems(13 décembre 2021) (Zheng Cheng and Dominique Méry) 55/74

Event B Structure and Proofs

CONTEXT MACHINE
ctxt id 2 machine id 2

EXTENDS REFINES
ctxt id 1 machine id 1

SETS SEES
s ctxt id 2

CONSTANTS VARIABLES
c v

AXIOMS INVARIANTS
A(s, c) I(s, c, v)

THEOREMS THEOREMS
Tc(s, c) Tm(s, c, v)

END VARIANT
V (s, c, v)

EVENTS
EVENT e

ANY x
WHERE G(s, c, v, x)
THEN

v : |BA(s, c, v, x, v′)
END

END

Invariant A(s, c)∧I(s, c, v)
preservation ∧G(s, c, v, x)

∧BA(s, c, v, x, v′)
⇒I(s, c, v′)

Event A(s, c)∧I(s, c, v)
feasibility ∧G(s, c, v, x)

⇒∃v′.BA(s, c, v, x, v′)
Variant A(s, c)∧I(s, c, v)
modelling ∧G(s, c, v, x)
progress ∧BA(s, c, v, x, v′)

⇒V (s, c, v′) < V (s, c, v)
Theorems A(s, c)⇒ Tc(s, c)

A(s, c)∧I(s, c, v)
⇒Tm(s, c, v)

System Engineering and Hybrid Systems(13 décembre 2021) (Zheng Cheng and Dominique Méry) 56/74

Election in One Shot : Building a Spanning Tree

MACHINE
ELECTION

SEES GRAPH
VARIABLES rt, ts, ok
INVARIANT

rt ∈ ND
ts ∈ ND↔ND
ok ∈ BOOL
ok = TRUE

⇒spanning (rt, ts, gr)

INITIALISATION Init(x)
EVENT election =̂
WHEN

ok = FALSE
THEN

rt, ts : |(spanning (rt′, ts′, gr))
ok := TRUE

ENDEND

CONTEXT GRAPH
(ax1) gr ⊆ ND ×ND

(ax2) gr = gr−1

(ax3) dom (gr) = ND
(ax4) id (ND) ∩ gr = ∅

(ax5) ∀p ·


p ⊆ ND ∧
p ⊆ t−1 [p]
=⇒
p = ∅


(Th1)fn ∈ ND → (ND 7→ND)
∀(r, t)· r ∈ ND ∧

t ∈ ND 7→ND
=⇒
(t = fn(r) ⇔ spanning (r, t, gr))



System Engineering and Hybrid Systems(13 décembre 2021) (Zheng Cheng and Dominique Méry) 57/74

Election in One Shot : Building a Spanning Tree

MACHINE
ELECTION

SEES GRAPH
VARIABLES rt, ts, ok
INVARIANT

rt ∈ ND
ts ∈ ND↔ND
ok ∈ BOOL
ok = TRUE

⇒spanning (rt, ts, gr)

INITIALISATION Init(x)
EVENT election =̂
WHEN

ok = FALSE
THEN

rt, ts : |(spanning (rt′, ts′, gr))
ok := TRUE

ENDEND

CONTEXT GRAPH
(ax1) gr ⊆ ND ×ND

(ax2) gr = gr−1

(ax3) dom (gr) = ND
(ax4) id (ND) ∩ gr = ∅

(ax5) ∀p ·


p ⊆ ND ∧
p ⊆ t−1 [p]
=⇒
p = ∅


(Th1)fn ∈ ND → (ND 7→ND)
∀(r, t)· r ∈ ND ∧

t ∈ ND 7→ND
=⇒
(t = fn(r) ⇔ spanning (r, t, gr))



System Engineering and Hybrid Systems(13 décembre 2021) (Zheng Cheng and Dominique Méry) 57/74

Election in One Shot : Building a Spanning Tree

MACHINE
ELECTION

SEES GRAPH
VARIABLES rt, ts, ok
INVARIANT

rt ∈ ND
ts ∈ ND↔ND
ok ∈ BOOL
ok = TRUE

⇒spanning (rt, ts, gr)

INITIALISATION Init(x)
EVENT election =̂
WHEN

ok = FALSE
THEN

rt, ts : |(spanning (rt′, ts′, gr))
ok := TRUE

ENDEND

CONTEXT GRAPH
(ax1) gr ⊆ ND ×ND

(ax2) gr = gr−1

(ax3) dom (gr) = ND
(ax4) id (ND) ∩ gr = ∅

(ax5) ∀p ·


p ⊆ ND ∧
p ⊆ t−1 [p]
=⇒
p = ∅


(Th1)fn ∈ ND → (ND 7→ND)
∀(r, t)· r ∈ ND ∧

t ∈ ND 7→ND
=⇒
(t = fn(r) ⇔ spanning (r, t, gr))



System Engineering and Hybrid Systems(13 décembre 2021) (Zheng Cheng and Dominique Méry) 57/74

Current Section Summary

1 System Engineering

2 Hybrid Models

3 The LUSTRE Programming Language

4 Discrete Models in Event B

5 The Event B modelling language

6 Summary on Event-B

7 Modelling in B-System

8 Extending the scope of Event-B

System Engineering and Hybrid Systems(13 décembre 2021) (Zheng Cheng and Dominique Méry) 58/74

Expressing models in the event B notation

• Models are defined in two ways :

I an abstract machine
I a refinement of an existing model

• Models use constants which are defined in structures called
contexts

• B structures are related by the three possible relations :
I the sees relationship for expressing the use of constants, sets

satisfying axioms and theorems.
I the extends relationship for expressing the extension of contexts by

adding new constants and new sets
I the refines relationship stating that a B model is refined by another

one.

System Engineering and Hybrid Systems(13 décembre 2021) (Zheng Cheng and Dominique Méry) 58/74

Machines and contexts

Machines

• REFINES

• SEES a context

• VARIABLES of the model

• INVARIANTS satisfied by the
variables

• THEOREMS satisfied by the
variables

• VARIANT

• EVENTS modifying the
variables

Context

• EXTENDS another context

• SETS declares new sets

• CONSTANTS define a list of
constants

• AXIOMS define the properties
of constants and sets

• THEOREMS list the theorems
which should be derived from
axioms

System Engineering and Hybrid Systems(13 décembre 2021) (Zheng Cheng and Dominique Méry) 59/74

Machines for Event B

MACHINE
m

REFINES
am

SEES
c

VARIABLES
x

INVARIANTS
I(x)

THEOREMS
T (x)

VARIANT
< variant >

EVENTS
< event >

END

System Engineering and Hybrid Systems(13 décembre 2021) (Zheng Cheng and Dominique Méry) 60/74

Contexts for Event B

CONTEXTS
c

EXTENDS
ac

SETS
c

CONSTANTS
k

AXIOMS
....

THEOREMS
T (x)

END

System Engineering and Hybrid Systems(13 décembre 2021) (Zheng Cheng and Dominique Méry) 61/74

Events

Event : E Before-After Predicate

BEGIN x : |P (x, x′) END P (x, x′)

WHEN G(x) THEN x : |P (x, x′) END G(x) ∧ P (x, x′)

ANY t
WHERE G(t, x)
THEN x : |P (x, x′, t) END

∃ t· (G(t, x) ∧ P (x, x′, t))

System Engineering and Hybrid Systems(13 décembre 2021) (Zheng Cheng and Dominique Méry) 62/74

Guards of event

Event : E Guard : grd(E)

BEGIN S END TRUE

WHEN G(x) THEN T END G(x)

ANY t WHERE G(t, x) THEN T END ∃ t·G(t, x)

System Engineering and Hybrid Systems(13 décembre 2021) (Zheng Cheng and Dominique Méry) 63/74

Proof obligations for a B model

Proof obligation

(INV1) Γ(s, c) ` Init(x) ⇒ I(x)

(INV2) Γ(s, c) ` I(x) ∧ BA(e)(x, x′) ⇒ I(x′)

(DEAD) Γ(s, c) ` I(x) ⇒ (grd(e1) ∨ . . . grd(en))

(SAFE) Γ(s, c) ` I(x) ⇒ A(x)

(FIS) Γ(s, c) ` I(x) ∧ grd (E) ⇒ ∃x′ · P (x, x′)

System Engineering and Hybrid Systems(13 décembre 2021) (Zheng Cheng and Dominique Méry) 64/74

Current Section Summary

1 System Engineering

2 Hybrid Models

3 The LUSTRE Programming Language

4 Discrete Models in Event B

5 The Event B modelling language

6 Summary on Event-B

7 Modelling in B-System

8 Extending the scope of Event-B

System Engineering and Hybrid Systems(13 décembre 2021) (Zheng Cheng and Dominique Méry) 65/74

Simple Form of an Event

- An event of the simple form is denoted by :

< event name > =̂
WHEN

< condition >
THEN

< action >
END

where
- < event name > is an identifier
- < condition > is the firing condition of the event
- < action > is a generalized substitution (parallel
“assignment”)

System Engineering and Hybrid Systems(13 décembre 2021) (Zheng Cheng and Dominique Méry) 65/74

Non-deterministic Form of an Event

- An event of the non-deterministic form is denoted by :

< event name > =̂
ANY < variable > WHERE

< condition >
THEN

< action >
END

where
- < event name > is an identifier
- < variable > is a (list of) variable(s)
- < condition > is the firing condition of the event
- < action > is a generalized substitution (parallel
“assignment”)

System Engineering and Hybrid Systems(13 décembre 2021) (Zheng Cheng and Dominique Méry) 66/74

Shape of a Generalized Substitution

A generalized substitution can be
- Simple assignment : x := E
- Generalized assignment : x : P (x, x′)
- Set assignment : x :∈ S

’ - Parallel composition :
T
· · ·
U

System Engineering and Hybrid Systems(13 décembre 2021) (Zheng Cheng and Dominique Méry) 67/74

Invariant Preservation Verification (0)

INVARIANT ∧ GUARD
=⇒
ACTION establishes INVARIANT

System Engineering and Hybrid Systems(13 décembre 2021) (Zheng Cheng and Dominique Méry) 68/74

Invariant Preservation Verification (1)

- Given an event of the simple form :

EVENT EVENT =̂
WHEN

G(x)
THEN

x := E(x)
END

and invariant I(x) to be preserved, the statement to prove is :

I(x) ∧ G(x) =⇒ I(E(x))

System Engineering and Hybrid Systems(13 décembre 2021) (Zheng Cheng and Dominique Méry) 69/74

Invariant Preservation Verification (2)

- Given an event of the simple form :

EVENT EVENT =̂
WHEN

G(x)
THEN

x : |P (x, x′)
END

and invariant I(x) to be preserved, the statement to prove is :

I(x) ∧ G(x) ∧ P (x, x′) =⇒ I(x′)

System Engineering and Hybrid Systems(13 décembre 2021) (Zheng Cheng and Dominique Méry) 70/74

Invariant Preservation Verification (3)

- Given an event of the simple form :

EVENT EVENT =̂
WHEN

G(x)
THEN

x :∈ S(x)
END

and invariant I(x) to be preserved, the statement to prove is :

I(x) ∧ G(x) ∧ x′ ∈ S(x) =⇒ I(x′)

System Engineering and Hybrid Systems(13 décembre 2021) (Zheng Cheng and Dominique Méry) 71/74

Invariant Preservation Verification (4)

- Given an event of the non-deterministic form :

EVENT EVENT =̂
ANY v WHERE

G(x, v)
THEN

x := E(x, v)
END

and invariant I(x) to be preserved, the statement to prove is :

I(x) ∧ G(x, v) =⇒ I(E(x, v))

System Engineering and Hybrid Systems(13 décembre 2021) (Zheng Cheng and Dominique Méry) 72/74

Refinement Technique (1)

- Abstract models works with variables x, and concrete one
with y
- A gluing invariant J(x, y) links both sets of vrbls
- Each abstract event is refined by concrete one (see below)

System Engineering and Hybrid Systems(13 décembre 2021) (Zheng Cheng and Dominique Méry) 73/74

Refinement Technique (2)

- Some new events may appear : they refine “skip”
- Concrete events must not block more often than the abstract
ones
- The set of new event alone must always block eventually

System Engineering and Hybrid Systems(13 décembre 2021) (Zheng Cheng and Dominique Méry) 74/74

Correct Refinement Verification (1)

- Given an abstract and a corresponding concrete event

EVENT EVENT =̂
WHEN

G(x)
THEN

x := E(x)
END

EVENT EVENT =̂
WHEN

H(y)
THEN

y := F (y)
END

and invariants I(x) and J(x, y), the statement to prove is :

I(x) ∧ J(x, y) ∧ H(y) =⇒ G(x) ∧ J(E(x), F (y))

System Engineering and Hybrid Systems(13 décembre 2021) (Zheng Cheng and Dominique Méry) 75/74

Correct Refinement Verification (2)

- Given an abstract and a corresponding concrete event

EVENT EVENT =̂
ANY v WHERE

G(x, v)
THEN

x := E(x, v)
END

EVENT EVENT =̂
ANY w WHERE

H(y, w)
THEN

y := F (y, w)
END

I(x) ∧ J(x, y) ∧ H(y, w)
=⇒
∃v · (G(x, v) ∧ J(E(x, v), F (y, w)))

System Engineering and Hybrid Systems(13 décembre 2021) (Zheng Cheng and Dominique Méry) 76/74

Correct Refinement Verification (3)

- Given a NEW event

EVENT EVENT =̂
WHEN

H(y)
THEN

y := F (y)
END

and invariants I(x) and J(x, y), the statement to prove is :

I(x) ∧ J(x, y) ∧ H(y) =⇒ J(x, F (y))

System Engineering and Hybrid Systems(13 décembre 2021) (Zheng Cheng and Dominique Méry) 77/74

General form of an event

EVENT e
ANY t
WHERE

G(c, s, t, x)
THEN

x : |(P (c, s, t, x, x′))
END

• c et s are constantes and visible sets by e

• x is a state variable or a list of variabless

• G(c, s, t, x) is the condition for observing
e.

• P (c, s, t, x, x′) is the assertion for the
relation over x and x′.

• BA(e)(c, s, x, x′) is the before-after
relationship for e and is defined by
∃t.G(c, s, t, x) ∧ P (c, s, t, x, x′).

System Engineering and Hybrid Systems(13 décembre 2021) (Zheng Cheng and Dominique Méry) 78/74

General form of proof obligations for an event e

Proofs obligations are simplified when they are generated by the module
called POG and goals in sequents as Γ ` G :

1 Γ ` G1 ∧G2 is decomposed into the two sequents
(1)Γ ` G1

(2)Γ ` G2

2 Γ ` G1 ⇒ G2 is transformed into the sequent Γ, G1 ` G2

Proof obligations in Rodin

• INIT/I/INV : C(s, c), INIT (c, s, x) ` I(c, s, x)

• e/I/INV : C(s, c), I(c, s, x), G(c, s, t, x), P (c, s, t, x, x′) ` I(c, s, x′)

• e/act/FIS : C(s, c), I(c, s, x), G(c, s, t, x) ` ∃x′.P (c, s, t, x, x′)

System Engineering and Hybrid Systems(13 décembre 2021) (Zheng Cheng and Dominique Méry) 79/74

Current Section Summary

1 System Engineering

2 Hybrid Models

3 The LUSTRE Programming Language

4 Discrete Models in Event B

5 The Event B modelling language

6 Summary on Event-B

7 Modelling in B-System

8 Extending the scope of Event-B

System Engineering and Hybrid Systems(13 décembre 2021) (Zheng Cheng and Dominique Méry) 80/74

Event- B versus B-System

• Modelling reactive systems : systems versus software

• Event-B ⇒ B ⇒ B-System

• Event-B ⇐ B ⇐ B-System

System Engineering and Hybrid Systems(13 décembre 2021) (Zheng Cheng and Dominique Méry) 80/74

Components in B-System

MACHINE
m

SEES
c

SETS
s

CONSTANTS
cst

PROPERTIES
p

VARIABLES
x

INVARIANT
I(x)

ASSERTIONS
a

INITIALISATION
Init(x)

OPERATIONS
. . . e

END

c defines the static environment for the proofs
related to m : sets, constants, axioms, theorems Γ(m).

Γ(m) ` ∀x ∈ V alues : Init(x)⇒ I(x)

∀e :
Γ(m) ` ∀x, x′, u ∈ V alues : I(x) ∧R(u, x, x′)⇒ I(x′)

Γ(m) ` ∀x ∈ V alues : I(x)⇒ Q(x)

e
ANY

u
WHERE

G(x, u)
THEN

x : |(R(u, x, x′))
END

or e is observed x
e−→ x′

System Engineering and Hybrid Systems(13 décembre 2021) (Zheng Cheng and Dominique Méry) 81/74

Components in B-System

MACHINE
m

SEES
c

SETS
s

CONSTANTS
cst

PROPERTIES
p

VARIABLES
x

INVARIANT
I(x)

ASSERTIONS
a

INITIALISATION
Init(x)

OPERATIONS
. . . e

END

c defines the static environment for the proofs
related to m : sets, constants, axioms, theorems Γ(m).

Γ(m) ` ∀x ∈ V alues : Init(x)⇒ I(x)

∀e :
Γ(m) ` ∀x, x′, u ∈ V alues : I(x) ∧R(u, x, x′)⇒ I(x′)

Γ(m) ` ∀x ∈ V alues : I(x)⇒ Q(x)

e
ANY

u
WHERE

G(x, u)
THEN

x : |(R(u, x, x′))
END

or e is observed x
e−→ x′

System Engineering and Hybrid Systems(13 décembre 2021) (Zheng Cheng and Dominique Méry) 81/74

Components in B-System

MACHINE
m

SEES
c

SETS
s

CONSTANTS
cst

PROPERTIES
p

VARIABLES
x

INVARIANT
I(x)

ASSERTIONS
a

INITIALISATION
Init(x)

OPERATIONS
. . . e

END

c defines the static environment for the proofs
related to m : sets, constants, axioms, theorems Γ(m).

Γ(m) ` ∀x ∈ V alues : Init(x)⇒ I(x)

∀e :
Γ(m) ` ∀x, x′, u ∈ V alues : I(x) ∧R(u, x, x′)⇒ I(x′)

Γ(m) ` ∀x ∈ V alues : I(x)⇒ Q(x)

e
ANY

u
WHERE

G(x, u)
THEN

x : |(R(u, x, x′))
END

or e is observed x
e−→ x′

System Engineering and Hybrid Systems(13 décembre 2021) (Zheng Cheng and Dominique Méry) 81/74

Components in B-System

MACHINE
m

SEES
c

SETS
s

CONSTANTS
cst

PROPERTIES
p

VARIABLES
x

INVARIANT
I(x)

ASSERTIONS
a

INITIALISATION
Init(x)

OPERATIONS
. . . e

END

c defines the static environment for the proofs
related to m : sets, constants, axioms, theorems Γ(m).

Γ(m) ` ∀x ∈ V alues : Init(x)⇒ I(x)

∀e :
Γ(m) ` ∀x, x′, u ∈ V alues : I(x) ∧R(u, x, x′)⇒ I(x′)

Γ(m) ` ∀x ∈ V alues : I(x)⇒ Q(x)

e
ANY

u
WHERE

G(x, u)
THEN

x : |(R(u, x, x′))
END

or e is observed x
e−→ x′

System Engineering and Hybrid Systems(13 décembre 2021) (Zheng Cheng and Dominique Méry) 81/74

Components in B-System

MACHINE
m

SEES
c

SETS
s

CONSTANTS
cst

PROPERTIES
p

VARIABLES
x

INVARIANT
I(x)

ASSERTIONS
a

INITIALISATION
Init(x)

OPERATIONS
. . . e

END

c defines the static environment for the proofs
related to m : sets, constants, axioms, theorems Γ(m).

Γ(m) ` ∀x ∈ V alues : Init(x)⇒ I(x)

∀e :
Γ(m) ` ∀x, x′, u ∈ V alues : I(x) ∧R(u, x, x′)⇒ I(x′)

Γ(m) ` ∀x ∈ V alues : I(x)⇒ Q(x)

e
ANY

u
WHERE

G(x, u)
THEN

x : |(R(u, x, x′))
END

or e is observed x
e−→ x′

System Engineering and Hybrid Systems(13 décembre 2021) (Zheng Cheng and Dominique Méry) 81/74

Components in B-System

MACHINE
m

SEES
c

SETS
s

CONSTANTS
cst

PROPERTIES
p

VARIABLES
x

INVARIANT
I(x)

ASSERTIONS
a

INITIALISATION
Init(x)

OPERATIONS
. . . e

END

c defines the static environment for the proofs
related to m : sets, constants, axioms, theorems Γ(m).

Γ(m) ` ∀x ∈ V alues : Init(x)⇒ I(x)

∀e :
Γ(m) ` ∀x, x′, u ∈ V alues : I(x) ∧R(u, x, x′)⇒ I(x′)

Γ(m) ` ∀x ∈ V alues : I(x)⇒ Q(x)

e
ANY

u
WHERE

G(x, u)
THEN

x : |(R(u, x, x′))
END

or e is observed x
e−→ x′

System Engineering and Hybrid Systems(13 décembre 2021) (Zheng Cheng and Dominique Méry) 81/74

Components in B-System

MACHINE
m

SEES
c

SETS
s

CONSTANTS
cst

PROPERTIES
p

VARIABLES
x

INVARIANT
I(x)

ASSERTIONS
a

INITIALISATION
Init(x)

OPERATIONS
. . . e

END

c defines the static environment for the proofs
related to m : sets, constants, axioms, theorems Γ(m).

Γ(m) ` ∀x ∈ V alues : Init(x)⇒ I(x)

∀e :
Γ(m) ` ∀x, x′, u ∈ V alues : I(x) ∧R(u, x, x′)⇒ I(x′)

Γ(m) ` ∀x ∈ V alues : I(x)⇒ Q(x)

e
ANY

u
WHERE

G(x, u)
THEN

x : |(R(u, x, x′))
END

or e is observed x
e−→ x′

System Engineering and Hybrid Systems(13 décembre 2021) (Zheng Cheng and Dominique Méry) 81/74

Current Section Summary

1 System Engineering

2 Hybrid Models

3 The LUSTRE Programming Language

4 Discrete Models in Event B

5 The Event B modelling language

6 Summary on Event-B

7 Modelling in B-System

8 Extending the scope of Event-B

System Engineering and Hybrid Systems(13 décembre 2021) (Zheng Cheng and Dominique Méry) 82/74

Properties for system

• A safety property safe(t1, t2, x,D, S) for x is prescribing that safe
values of x in the interval [t1, t2] are in S, a subset of D : S ⊆ D

x ∈ R+ −→ D
∀t ∈ [t1, t2] : x(t) ∈ S

• A stabilisation property stable(t1, t2, x,D,U,E, S) is prescribing
that U (Unstable)) and S (Stable) are two disjunct subsets of D
and that x(t1) ∈ U , x(t2) ∈ S and the function x between t1 and t2
is continuously evolving from t1 to t2 :

U ⊆ D,S ⊆ D,E ⊆ D,U ⊆ E,S ⊆ E
x ∈ R+ −→ D
x(t1) ∈ U
x(t2) ∈ S
x ∈ CD((t1, t2])

E plays the role of an evolution of the states in a given environment
which is stated by I. It means that I defines some kind of invariant which
can be simply R.

System Engineering and Hybrid Systems(13 décembre 2021) (Zheng Cheng and Dominique Méry) 82/74

Safety properties

Example
Safety properties
In the diagram, we
illustrate the possible
cases when one define
a domain R, a safety
property S = [0.5, 2.4]
which is stating that three
possible curves between
t1 = 0 and t2 = 3
should be satisfying that
x(t) ∈ S. Curves 1
(safe(0, 3, x1,R, S)
) and 3
(safe(0, 3, x3,R, S)) are
blue and are satisfying
what is the safety pro-
perty ; Curve 2 is not cor-
rect : safe(0, 3, x2,R, S)
is not satisfied for x2(2)
over the value 2.4.

0 0.5 1 1.5 2 2.5 3

1

2

3

4

5

t

x

Curve 1 x1
Curve 2 x2
Curve 3 x3
Minimum
Maximum

System Engineering and Hybrid Systems(13 décembre 2021) (Zheng Cheng and Dominique Méry) 83/74

Stabilisation properties

Example
Stabilisation properties

We consider sta-
bilisation properties
stable(t1, t2, x,R, U, S)
with the following de-
finitions : t1 = 0,
t2 = 3, U =]−∞, 2],
S =]2,+∞[.
x1 is satisfying
stable(t1, t2, x1,R, U, S)
but not
stable(t1, t2, x2,R, U, S).

0 0.5 1 1.5 2 2.5 3

0

1

2

3

4

5

t

x

x1
x2

Minimum
EvolutionMin
EvolutionMax

System Engineering and Hybrid Systems(13 décembre 2021) (Zheng Cheng and Dominique Méry) 84/74

According to the case study developed we have identified several phases,
when the system is progressing :

• The system may be stable and the controller may keep or control
the temperature between Tmin and Tmax ; the safety property
safe(t1, t2, {θ, now, . . .},R, Tmin..Tmax) and the project in[?] is
defining the full process for the thermostat in mode nominal ; the
first machine contains one event Update which is assigning to Ta a
correct curve as stated by the safety property. It states that the
variable Ta is representing what we have in mind when we want to
get a correct observed system. The question is to prove that the
function exists and the development will have as objective the
progressive construction of a curve satisfying the safety property.

• The system may be entering an unstable state, because the user is
setting new min and max ; the system may enter an unstable state
and is supposed to recover from this state to reach a stable state
satisfying the stability property called S in our assertion language ;
another project called tracker is used and starts by a machine
expressing the stabilisation property stable(t1, t2, x,D,U,E, S)
which should be possible according to the underlying constraints.

System Engineering and Hybrid Systems(13 décembre 2021) (Zheng Cheng and Dominique Méry) 85/74

Example
Continuous actions as generalized substitutions

• x : −(λt.sin(t)) is a continuous variable behaving as the sine
function and is expressed as x : |(x′ = λt.sin(t))

• z : −(v ∈ R+, ż = λt.v×t) is a continuous assignment meaning that
z will behave as the x’= solution of the differential equation
(v ∈ R+, ż = λt.v×t). The variable z is not modified before the
time t < now and is behaving as a solution from now. The
generalized substitution is leading to the following expression :
z : |(z′ = y, v ∈ R+, ẏ = λt.v×t)

• u̇ : −u, u(now) = u0 is a continuous variable assignment meaning
that u is a solution of the differential equation u̇ = u with the
constraint u(now) = u0. In this case, the translation is then
u : |(u′ = y, ẏ = y, y(now) = u0).

System Engineering and Hybrid Systems(13 décembre 2021) (Zheng Cheng and Dominique Méry) 86/74

Example
Updating the temperature
The variable x is a continuous variable defined as a function from R+

into R and is updated from now till ∞. The expression is stating that
the variable x is not modified from 0 till now and from now the variable
x is a solution of the differential equation ẏ = −k·y over the domain
[now,∞[. The following notation is the generalized substitution using
continuous variable.

x :

∣∣∣∣∣∣∣∣∣∣∣∣


x′ = y
y ∈ now..∞ −→ R
ẏ = −k·y
y(now) = x(now)
∀t < now.y(t) = x(t)
∀t ≥ now.y(t) = x(t)




The variable x is behaving as the function y from now and y is an
auxiliary notation which is used for the definition of the expression
defining the extension of x. In fact, y is playing the role of the prime
notation.

System Engineering and Hybrid Systems(13 décembre 2021) (Zheng Cheng and Dominique Méry) 87/74

Continuous Generalized Substitution

A continuous generalized substitution over the set of continuous variables
x is a expression defined by a relation between x and x′ over constants c
and sets s using classical set-theoretical operators, ε expressions,
time-dependent functions defined explicitly and implicitly using
differential equations.

For instance, we list examples of using this notation :

• clock : |(clock′ = εf.(∀t ∈ 0..now ⇒ f(t) = clock(t)) ∧ (∀t ∈
now..∞⇒ f(t) = t−now)) which means that clock is updated
from the time now and is the function λt.f(t) = t−now)).

• u : |(u′ = εy.(ẏ = y, y(now) = u0)).

The ε expressions should be proved to be feasible ; in the case of the
differential equation, one has to add conditions that lead to the existence
of solutions.

System Engineering and Hybrid Systems(13 décembre 2021) (Zheng Cheng and Dominique Méry) 88/74

Definition

Hybrid Event An hybrid event e is defined by rhe notation
EVENT e

ANY t
WHERE

G(x, t)
THEN

x : |(P (x, x′, t))
END

An hybrid event is defined as a classical Event-B event and the notation
is extending the discrete events by allowing the use of hybrid actions.
From the current syntax, we can define either purely discrete events or
continuous events.

System Engineering and Hybrid Systems(13 décembre 2021) (Zheng Cheng and Dominique Méry) 89/74

We have developed two Event-B basic models which are corresponding to
modes when one wants to describe and control a real system :

• BM 3(stable(t1,t2,x,D,U,E,S) is a diamond basic Event-B model
and it models a mode corresponding to a value of x satisfying U at
a time t1 or later and such that it exists a time later satisfying S but
not later than t2.

• BM 2(safe(t1,t2,x,D,S)) is a box basic Event-B model and it aims
to maintain the value of x in S between t1 and t2.

We will define the notion of Event-B model in a more rigorous way later
in the section. A first defintion would be that an Event-B model is an
Event-B project solving a given problem. In the two examples, we have
solved the problem of controlling the temperature between two bounds
and the problem of stabilizing the temperature from a temperature out of
the bounds to a temperature between the two bounds.

System Engineering and Hybrid Systems(13 décembre 2021) (Zheng Cheng and Dominique Méry) 90/74

BM 3(stable(t1,t2,x,D,U,E,S)

EVENT Stabilizing
ANY y, d, s
WHERE

y ∈ R+ −→ D

d ∈ R+

s ∈ R+

t1 ≤ d
s ≤ t2
d ≤ s
U(yd)
S(ys)

THEN
act1 : x := y
END

The event Stabilizing is expressing
that the event detects a value y(d)
in U and that it exists a time later
s such that y(s) at a time s before
t2. Fig. 1 is describing the property
P as the detection state and Q is the
target state.

BM 2(safe(t1,t2,x,D,S))

EVENT Update
ANY y,
WHERE

y ∈ R+ −→ D
∀t ∈ t1..t2.y(t) ∈ S
∀t ∈ 0..t1.y(t) = x(t)

THEN
act1 : x := y
END

Previous values of x are not mo-
dified before t1 and the starting
time is t1. Fig. 2 is describing the
property safe satisfied bbetween
t1 and t2.

System Engineering and Hybrid Systems(13 décembre 2021) (Zheng Cheng and Dominique Méry) 91/74

EVENT Stabilizing

x(t2)x(t1)x(t0) x(t)

P(x(s1))

x(s1)) x(s2)

Q(x(s2))

;

at time t1 at time t2

x(t) ∈ safe

observation e

x(t) ∈ D x(t) ∈ D

Figure – Schema for the diamond model

System Engineering and Hybrid Systems(13 décembre 2021) (Zheng Cheng and Dominique Méry) 92/74

EVENT Update

x(t2)x(t1)x(t0) x(t)
x(t) x(t) x(t)

at time t1 at time t2

x(t) ∈ safe

observation e

x(t) ∈ D x(t) ∈ D

Figure – Schema for the box model

System Engineering and Hybrid Systems(13 décembre 2021) (Zheng Cheng and Dominique Méry) 93/74

Conclusion and Next Lectures

• Extending the scope of the generalized substitution by differential
equations.

• Defining specific patterns

• Illustrating the full chain for developing hybrid systems.

System Engineering and Hybrid Systems(13 décembre 2021) (Zheng Cheng and Dominique Méry) 94/74

	System Engineering
	Hybrid Models
	The LUSTRE Programming Language
	Discrete Models in Event B
	The Event B modelling language
	Summary on Event-B
	Modelling in B-System
	Extending the scope of Event-B

